Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations

[1]  A. Ivanov,et al.  Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations , 2021, Nature Communications.

[2]  J. Hofkens,et al.  Accurate modeling of a biological nanopore with an extended continuum framework. , 2020, Nanoscale.

[3]  C. Bustamante,et al.  Single-molecule diffusometry reveals no catalysis-induced diffusion enhancement of alkaline phosphatase as proposed by FCS experiments , 2020, Proceedings of the National Academy of Sciences.

[4]  U. Keyser,et al.  Cation dependent electroosmotic flow in glass nanopores , 2019, Applied Physics Letters.

[5]  Gabriel A. Frank,et al.  Packaging of DNA origami in viral capsids. , 2019, Nanoscale.

[6]  Luke Whitesell,et al.  HSP90: Enabler of Cancer Adaptation , 2019, Annual Review of Cancer Biology.

[7]  C. Dekker,et al.  Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores , 2018, ACS nano.

[8]  Angus Silver,et al.  NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data , 2018, Front. Neuroinform..

[9]  C. Joo,et al.  Single-molecule peptide fingerprinting , 2017, Proceedings of the National Academy of Sciences.

[10]  Roberto Grassi,et al.  Graphene-edge dielectrophoretic tweezers for trapping of biomolecules , 2017, Nature Communications.

[11]  Hendrik Dietz,et al.  How We Make DNA Origami , 2017, Chembiochem : a European journal of chemical biology.

[12]  A. Aksimentiev,et al.  Picomolar Fingerprinting of Nucleic Acid Nanoparticles Using Solid-State Nanopores. , 2017, ACS nano.

[13]  J. Buchner,et al.  The HSP90 chaperone machinery , 2017, Nature Reviews Molecular Cell Biology.

[14]  Benjamin Schuler,et al.  Single-molecule electrometry. , 2017, Nature nanotechnology.

[15]  M. Zacharias,et al.  Multi-domain structure and correlated dynamics determined by self-consistent FRET networks , 2016, Nature Methods.

[16]  David Sept,et al.  Real-time shape approximation and fingerprinting of single proteins using a nanopore. , 2015, Nature nanotechnology.

[17]  Thorsten Hugel,et al.  Single-Molecule Analysis beyond Dwell Times: Demonstration and Assessment in and out of Equilibrium. , 2016, Biophysical journal.

[18]  Ulrich F. Keyser,et al.  Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. , 2016, Nature nanotechnology.

[19]  Jejoong Yoo,et al.  Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field. , 2015, ACS nano.

[20]  Cees Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[21]  M. Howarth,et al.  Plug-and-Play Pairing via Defined Divalent Streptavidins☆ , 2014, Journal of molecular biology.

[22]  Cees Dekker,et al.  Fast translocation of proteins through solid state nanopores. , 2013, Nano letters.

[23]  Quan Wang,et al.  Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. , 2012, Accounts of chemical research.

[24]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[25]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.

[26]  Sheereen Majd,et al.  Controlling the translocation of proteins through nanopores with bioinspired fluid walls , 2011, Nature nanotechnology.

[27]  Sheereen Majd,et al.  Controlling protein translocation through nanopores with bio-inspired fluid walls , 2011 .

[28]  S. Lindquist,et al.  HSP90 at the hub of protein homeostasis: emerging mechanistic insights , 2010, Nature Reviews Molecular Cell Biology.

[29]  U. Rant,et al.  Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. , 2010, Nano letters.

[30]  Cees Dekker,et al.  Controlling nanopore size, shape and stability , 2010, Nanotechnology.

[31]  Martin Hessling,et al.  Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90 , 2009, Nature Structural &Molecular Biology.

[32]  David A Agard,et al.  Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. , 2008, Molecular cell.

[33]  M. Muthukumar,et al.  Polymer capture by electro-osmotic flow of oppositely charged nanopores. , 2007, The Journal of chemical physics.

[34]  L. Pearl,et al.  Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex , 2006, Nature.