Ground-State and Thermodynamical Properties of Uranium Mononitride from Anharmonic First-Principles Theory

[1]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[2]  J. M. Leitnaker,et al.  CHEMICAL THERMODYNAMIC PROPERTIES OF NUCLEAR MATERIALS. I. URANIUM MONONITRIDE. , 1972 .

[3]  V. G. Baranov,et al.  A physical model for evaluating uranium nitride specific heat , 2013 .

[4]  C. F. Cline,et al.  Elastic properties of uranium mononitride at 298 K , 1972 .

[5]  M. Murabayashi,et al.  Uranium mononitride: Heat capacity and thermal conductivity from 298 to 1000 °K , 1971 .

[6]  S. Yamanaka,et al.  A molecular dynamics study of the heat capacity of uranium mononitride , 2000 .

[7]  Christian Affortit Chaleur specifique de UC et UN , 1970 .

[8]  Kenneth R. Czerwinski,et al.  First-principles study of single-crystal uranium mono- and dinitride , 2007 .

[9]  A. Otero-de-la-Roza,et al.  Treatment of first-principles data for predictive quasiharmonic thermodynamics of solids: The case of MgO , 2011 .

[10]  H. Tagawa,et al.  Lattice parameter of uranium mononitride , 1979 .

[11]  A. Gonis,et al.  Assessing a solids-biased density-gradient functional for actinide metals , 2010 .

[12]  Olle Eriksson,et al.  The self-consistent ab initio lattice dynamical method , 2009 .

[13]  U. Benedict Study of actinide metals and actinide compounds under high pressures , 1984 .

[14]  E. Westrum,et al.  Uranium Mononitride: Heat Capacity and Thermodynamic Properties from 5° to 350°K , 1966 .

[15]  P. Chevalier,et al.  Thermodynamic modelling of the N–U system , 2000 .

[16]  D. L. Keller,et al.  FABRICATION AND PROPERTIES OF HOT-PRESSED URANIUM MONONITRIDE , 1963 .

[17]  N. A. Curry An investigation of the magnetic structure of uranium nitride by neutron diffraction , 1965 .

[18]  M I Katsnelson,et al.  Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.

[19]  M. Stan,et al.  First-principles study of structural, elastic, electronic, vibrational and thermodynamic properties of UN , 2013 .

[20]  P. Olsson,et al.  GGA+U study of uranium mononitride: A comparison of the U-ramping and occupation matrix schemes and incorporation energies of fission products , 2016 .

[21]  F. Ingold,et al.  Nitrides as a nuclear fuel option , 2005 .

[22]  Robert A. Evarestov,et al.  Electronic structure of crystalline uranium nitride: LCAO DFT calculations , 2008 .

[23]  Joshua R. Smith,et al.  A universal equation of state for solids , 1986 .

[24]  Ping Zhang,et al.  Structural, electronic, and thermodynamic properties of UN: Systematic density functional calculations , 2010, 1005.5510.

[25]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[26]  Kenneth L. Peddicord,et al.  Material property correlations for uranium mononitride , 1990 .

[27]  P. Söderlind First-principles elastic and structural properties of uranium metal , 2002 .

[28]  Johansson,et al.  Electronic properties of f-electron metals using the generalized gradient approximation. , 1994, Physical review. B, Condensed matter.

[29]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[30]  G. M. Stocks,et al.  Quantum oscillations of nitrogen atoms in uranium nitride , 2012, Nature Communications.

[31]  T. L. Bihan,et al.  New investigation of pressure-induced rhombohedral distortion of uranium nitride , 2003 .

[32]  Vogt,et al.  Systematic study of the lattice dynamics of the uranium rocksalt-structure compounds. , 1986, Physical review. B, Condensed matter.

[33]  M. Brooks Electronic structure of NaCl-type compounds of the light actinides. III. The actinide nitride series , 1984 .

[34]  S. Yamanaka,et al.  Thermal and mechanical properties of uranium nitride prepared by SPS technique , 2008 .

[35]  A. Otero-de-la-Roza,et al.  Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation , 2011, Comput. Phys. Commun..

[36]  R. Benz Th-N-O phase diagram , 1972 .

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[39]  A. Otero-de-la-Roza,et al.  Equations of state and thermodynamics of solids using empirical corrections in the quasiharmonic approximation , 2011 .

[40]  A. J. Blake,et al.  Synthesis and Structure of a Terminal Uranium Nitride Complex , 2012, Science.

[41]  A. Perron,et al.  Thermodynamic re-assessment of the Pu–U system and its application to the ternary Pu–U–Ga system , 2014 .

[42]  V. Skripov,et al.  Melting lines of simple substances: thermodynamic similarity and behaviour of thermal properties , 1986 .

[43]  R. Dell,et al.  Thermodynamic properties of uranium compounds. Part 2.—Low-temperature heat capacity and entropy of three uranium nitrides , 1966 .

[44]  U. Benedict Comparative aspects of the high-pressure behaviour of lanthanide and actinide compounds , 1995 .

[45]  Spin-orbit coupling in the actinide elements : A critical evaluation of theoretical equilibrium volumes , 1999, cond-mat/9908344.

[46]  H. Deng,et al.  First-principles study on the interaction of nitrogen atom with α–uranium: From surface adsorption to bulk diffusion , 2014 .

[47]  D. Olander,et al.  Thermodynamics of gas dissolution in liquid metals with extensive solubility; the U(L)-N, Zr(L)-O, and Th(L)-O systems , 1995 .

[48]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[49]  Johansson,et al.  Orbital polarization in narrow-band systems: Application to volume collapses in light lanthanides. , 1990, Physical review. B, Condensed matter.

[50]  E. Cordfunke,et al.  The heat capacity of uranium mononitride , 1972 .

[51]  S. N. Bashlykov,et al.  Thermodynamics of the uranium-carbon, uranium-nitrogen, and plutonium-carbon systems , 1970 .

[52]  R. Arróyave,et al.  The U-Ti system: Strengths and weaknesses of the CALPHAD method , 2011 .

[53]  A. Perron,et al.  The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study , 2015 .

[54]  B. Sadigh,et al.  Density-functional theory for plutonium , 2019, Advances in Physics.

[55]  C. D. Novion,et al.  Constantes elastiques des carbures, nitrures et oxydes d'uranium et de plutonium , 1969 .

[56]  G. M. Stocks,et al.  Ground-state electronic structure of actinide monocarbides and mononitrides , 2009 .

[57]  Theodore M. Besmann,et al.  Uranium Nitride as LWR TRISO Fuel: Thermodynamic Modeling of U-C-N and Thermomechanics , 2012 .

[58]  A. Otero-de-la-Roza,et al.  Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data , 2011, Comput. Phys. Commun..

[59]  T. Björkman,et al.  High-temperature phonon stabilization of γ -uranium from relativistic first-principles theory , 2012 .

[60]  A. Verma,et al.  First-principles investigation of electronic, vibrational, elastic, and structural properties of ThN and UN up to 100 GPa , 2011 .

[61]  G. Lander,et al.  Spin and phonon excitations in actinide systems , 1980 .

[62]  Rudy J. M. Konings,et al.  Calculation of enthalpies of formation of actinide nitrides , 2005 .

[63]  M. V. Losev,et al.  Electronic structure of crystalline uranium nitrides UN, U2N3 and UN2: LCAO calculations with the basis set optimization , 2008 .

[64]  V. G. Baranov,et al.  Thermal stability investigation technique for uranium nitride , 2016 .