Synaptic physiology

The sequence of events from axon terminal depolarization to integration of information by summation of separate synaptic effects is described. Following depolarization of the terminal, transmitter substance is released probabilistically in integral multiples of a basic quantity, the transmitter unit. The average rate of unit release depends upon membrane potential, ion concentrations (particularly calcium) in the bathing medium, the quantity of transmitter available for release, and the history of synaptic use. After diffusing across the synaptic cleft, transmitter molecules interact with receptor sites on the postsynaptic membrane and cause the conductance for certain ions to increase; meanwhile, the transmitter is destroyed enzymatically or lost from the vicinity of the postsynaptic membrane by diffusion. The effects from the simultaneous action of many synapses add--often linearly--to permit information from many sources to be combined in a single neuron.

[1]  D. Bodian Electron Microscopy: Two Major Synaptic Types on Spinal Motoneurons , 1966, Science.

[2]  Walter L. Smith On renewal theory, counter problems and quasi-Poisson processes , 1957 .

[3]  R. Werman,et al.  Correlation of Transmitter Release with Membrane Properties of the Presynaptic Fiber of the Squid Giant Synapse , 1967, The Journal of general physiology.

[4]  A. R. Martin,et al.  Spontaneous subthreshold activity at mammalian neuromuscular junctions , 1956, The Journal of physiology.

[5]  J. Eccles,et al.  The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs , 1958, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[6]  R. Rahamimoff,,et al.  Inhibitory Action of Sodium Ions on Transmitter Release at the Motor End-plate , 1967, Nature.

[7]  S. W. Kuffler,et al.  The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction , 1961, The Journal of physiology.

[8]  R. B. Wuerker,et al.  Membrane impedance changes during synaptic transmission in cat spinal motoneurons. , 1967, Journal of neurophysiology.

[9]  P. Fatt,et al.  Membrane permeability change during inhibitory transmitter action in crustacean muscle , 1958, The Journal of physiology.

[10]  B. Katz,et al.  Changes in end‐plate activity produced by pre‐synaptic polarization , 1954, The Journal of physiology.

[11]  N. Lemkey-Johnston,et al.  Synaptic Vesicles of Inhibitory and Excitatory Terminals in the Cerebellum , 1967, Science.

[12]  G. Burnstock,et al.  Spontaneous potentials at sympathetic nerve endings in smooth muscle , 1962, The Journal of physiology.

[13]  A. Lundberg,et al.  Unitary Excitatory Postsynaptic Potentials in Clarke's Column Neurones , 1967, Nature.

[14]  R E Thies,et al.  NEUROMUSCULAR DEPRESSION AND THE APPARENT DEPLETION OF TRANSMITTER IN MAMMALIAN MUSCLE. , 1965, Journal of neurophysiology.

[15]  A TAKEUCHI,et al.  The long-lasting depression in neuromuscular transmission of frog. , 1958, The Japanese journal of physiology.

[16]  B. Katz,et al.  On the localization of acetylcholine receptors , 1955, The Journal of physiology.

[17]  J. Hubbard Repetitive stimulation at the mammalian neuromuscular junction, and the mobilization of transmitter , 1963, The Journal of physiology.

[18]  H. Gerschenfeld,et al.  Ionic Mechanism of Cholinergic inhibition in Molluscan Neurons , 1967, Science.

[19]  B. Katz,et al.  The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  B. Katz,et al.  A study of spontaneous miniature potentials in spinal motoneurones , 1963, The Journal of physiology.

[21]  R. Miledi,et al.  Spontaneous synaptic potentials and quantal release of transmitter in the stellate ganglion of the squid , 1967, The Journal of physiology.

[22]  A. R. Martin,et al.  A further study of the statistical composition of the end‐plate potential , 1955, The Journal of physiology.

[23]  R. Miledi,et al.  The action of calcium on neuronal synapses in the squid , 1966, The Journal of physiology.

[24]  B. Katz,et al.  The effect of magnesium on the activity of motor nerve endings , 1954, The Journal of physiology.

[25]  B. Katz,et al.  The release of acetylcholine from nerve endings by graded electric pulses , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  R. Miledi Strontium as a Substitute for Calcium in the Process of Transmitter Release at the Neuromuscular Junction , 1966, Nature.

[27]  J. Kelly Antagonism between Na+ and Ca2+ at the Neuromuscular Junction , 1965, Nature.

[28]  D. P. Lloyd POST-TETANIC POTENTIATION OF RESPONSE IN MONOSYNAPTIC REFLEX PATHWAYS OF THE SPINAL CORD , 1949, The Journal of general physiology.

[29]  R. Guillery,et al.  Synaptic morphology in the normal and degenerating nervous system. , 1966, International review of cytology.

[30]  A Mallart,et al.  An analysis of facilitation of transmitter release at the neuromuscular junction of the frog , 1967, The Journal of physiology.

[31]  B. Katz,et al.  A study of synaptic transmission in the absence of nerve impulses , 1967, The Journal of physiology.

[32]  R. Llinás,et al.  Transmission across the squid giant synapse in the presence of tetrodotoxin. , 1967, The Journal of physiology.

[33]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[34]  D. Jenkinson The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction , 1957, The Journal of physiology.

[35]  H. Gerschenfeld,et al.  IONIC MECHANISM ASSOCIATED WITH NON-CHOLINERGIC SYNAPTIC INHIBITION IN MOLLUSCAN NEURONS. , 1965, Journal of neurophysiology.

[36]  B. L. Ginsborg,et al.  Spontaneous activity in muscle fibres of the chick , 1960, The Journal of physiology.

[37]  A. W. Liley,et al.  The quantal components of the mammalian end‐plate potential , 1956, The Journal of physiology.

[38]  E. Gray Problems of Interpreting the Fine Structure of Vertebrate and Invertebrate Synapses , 1966 .

[39]  J. Hubbard,et al.  Evidence for a Poisson Distribution of Miniature End-plate Potentials and some Implications , 1965, Nature.

[40]  N. Takeuchi Some properties of conductance changes at the end‐plate membrane during the action of acetylcholine , 1963, The Journal of physiology.

[41]  M. V. Bennett,et al.  Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. , 1967, Journal of neurophysiology.

[42]  B. Katz,et al.  The effect of calcium on acetylcholine release from motor nerve terminals , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  B. Katz,et al.  An analysis of the end‐plate potential recorded with an intra‐cellular electrode , 1951, The Journal of physiology.

[44]  R E Burke,et al.  Composite nature of the monosynaptic excitatory postsynaptic potential. , 1967, Journal of neurophysiology.

[45]  P. Usherwood Spontaneous miniature potentials from insect muscle fibres , 1963, The Journal of physiology.

[46]  B. L. Ginsborg,et al.  Spontaneous synaptic activity in sympathetic ganglion cells of the frog , 1963, The Journal of physiology.

[47]  P. Usherwood,et al.  PERIPHERAL INHIBITION IN SKELETAL MUSCLE OF INSECTS. , 1965, Journal of neurophysiology.

[48]  A TAKEUCHI,et al.  On the permeability of end‐plate membrane during the action of transmitter , 1960, The Journal of physiology.

[49]  A. W. Liley,et al.  The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction , 1956, The Journal of physiology.

[50]  J. D. Del Castillo,et al.  The nature of the neuromuscular block produced by magnesium , 1954, The Journal of physiology.

[51]  M. Kuno Quantal components of excitatory synaptic potentials in spinal motoneurones , 1964, The Journal of physiology.

[52]  L. Tauc,et al.  ‘Desensitization’ of Cholinergic Receptors by Acetylcholine in Molluscan Central Neurones , 1963, Nature.

[53]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[54]  R. Granit,et al.  Recurrent inhibition in relation to frequency of firing and limitation of discharge rate of extensor motoneurones , 1960, The Journal of physiology.

[55]  B. L. Ginsborg Ion movements in junctional transmission. , 1967, Pharmacological reviews.

[56]  A. R. Martin,et al.  Quantal Nature of Synaptic Transmission , 1966 .

[57]  B. Katz,et al.  The timing of calcium action during neuromuscular transmission , 1967, The Journal of physiology.

[58]  G. Pilar,et al.  Quantal components of the synaptic potential in the ciliary ganglion of the chick , 1964, The Journal of physiology.

[59]  D. Elmqvist,et al.  A study of some electrophysiological properties of human intercostal muscle , 1960, The Journal of physiology.

[60]  A. W. Liley,et al.  An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. , 1953, Journal of neurophysiology.

[61]  W. L. Nastuk FUNDAMENTAL ASPECTS OF NEUROMUSCULAR TRANSMISSION * , 1966, Annals of the New York Academy of Sciences.

[62]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[63]  K. Uchizono Excitatory and inhibitory synapses in the cat spinal cord. , 1966, The Japanese journal of physiology.

[64]  H. Gerschenfeld,et al.  Ionic Mechanisms of Cholinergic Excitation in Molluscan Neurons , 1967, Science.

[65]  A. Takeuchi,et al.  Anion permeability of the inhibitory post‐synaptic membrane of the crayfish neuromuscular junction , 1967, The Journal of physiology.

[66]  A. Takeuchi,et al.  Electrical Changes in Pre- and Postsynaptic Axons of the Giant Synapse of Loligo , 1962, The Journal of general physiology.

[67]  R. Miledi,et al.  Post-tetanic increase in frequency of miniature end-plate potentials in calcium-free solutions. , 1967, Journal of Physiology.

[68]  K. Yamakawa,et al.  The effects of lithium on the neuromuscular junction of the frog. , 1966, The Japanese journal of physiology.

[69]  B. Katz,et al.  A comparison of acetylcholine and stable depolarizing agents , 1957, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[70]  P. Gage,et al.  Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junction , 1966, The Journal of physiology.

[71]  E R Kandel,et al.  A Direct Synaptic Connection Mediating Both Excitation and Inhibition , 1967, Science.

[72]  B. Katz,et al.  A study of the ‘desensitization’ produced by acetylcholine at the motor end‐plate , 1957, The Journal of physiology.

[73]  F. Dodge,et al.  On the relationship between calcium concentration and the amplitude of the end-plate potential. , 1967, The Journal of physiology.

[74]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[75]  F. Walberg Elongated vesicles in terminal boutons of the central nervous system, a result of aldehyde fixation. , 1966, Acta anatomica.

[76]  S. Thesleff The Mode of Neuromuscular Block Caused by Acetylcholine, Nicotine, Decamethonium and Suecinylcholine1 , 1955 .