Integrable Nonlinear Evolution Equations on a Finite Interval
暂无分享,去创建一个
Dmitry Shepelsky | Anne Boutet de Monvel | A. B. D. Monvel | D. Shepelsky | A. Fokas | Athanassis S. Fokas
[1] A. Fokas,et al. The nonlinear Schrödinger equation on the interval , 2004 .
[2] A. S. Fokas,et al. A transform method for linear evolution PDEs on a finite interval , 2005 .
[3] A. Fokas,et al. An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates , 1992 .
[4] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[5] Inverse Scattering Transform for Systems with Rational Spectral Dependence , 1995 .
[6] Athanassios S. Fokas,et al. Two–dimensional linear partial differential equations in a convex polygon , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[7] A. B. D. Monvel,et al. THE mKdV EQUATION ON THE HALF-LINE , 2004, Journal of the Institute of Mathematics of Jussieu.
[8] Xin Zhou. The Riemann-Hilbert problem and inverse scattering , 1989 .
[9] Justin Holmer. The Initial-Boundary Value Problem for the Korteweg–de Vries Equation , 2005 .
[10] A. Fokas. An initial-boundary value problem for the nonlinear Schrödinger equation , 1989 .
[11] A. S. Fokas,et al. Analysis of the Global Relation for the Nonlinear Schrödinger Equation on the Half-line , 2003 .
[12] A. S. Fokas,et al. The generalized Dirichlet‐to‐Neumann map for certain nonlinear evolution PDEs , 2005 .
[13] A. S. Fokas,et al. The nonlinear Schrödinger equation on the half-line , 2004 .
[14] Stephanos Venakides,et al. New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .
[15] Athanassios S. Fokas,et al. Integrable Nonlinear Evolution Equations on the Half-Line , 2002 .
[16] V. E. Adler,et al. Boundary conditions for integrable equations , 1997 .
[17] A. B. D. Monvel,et al. The modified KdV equation on a finite interval , 2003 .
[18] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.
[19] S. Manakov,et al. Initial-Boundary Value Problems for Linear and Soliton PDEs , 2002, nlin/0205030.
[20] A. B. D. Monvel,et al. Initial boundary value problem for the mKdV equation on a finite interval , 2004 .
[21] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[22] P. Lax. INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .
[23] A. Degasperis,et al. On the initial-boundary value problems for soliton equations , 2001 .
[24] A. S. Fokas,et al. A unified transform method for solving linear and certain nonlinear PDEs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[25] S. Kamvissis. Semiclassical nonlinear Schrödinger on the half line , 2003 .
[26] A. B. D. Monvel,et al. Generation of asymptotic solitons of the nonlinear Schrödinger equation by boundary data , 2003 .
[27] A. Degasperis,et al. Integrable and Nonintegrable Initial Boundary Value Problems for Soliton Equations , 2005 .
[28] Vladimir E. Zakharov,et al. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .
[29] A. Fokas. On the integrability of linear and nonlinear partial differential equations , 2000 .
[30] P. Santini,et al. The initial boundary value problem on the segment for the Nonlinear Schrodinger equation; the algebro-geometric approach. I , 2003 .
[31] A. Fokas,et al. The linearization of the initial-boundary value problem of the nonlinear Schro¨dinger equation , 1996 .