Dynamically consistent shallow‐atmosphere equations with a complete Coriolis force

Shallow-atmosphere equations retaining both the vertical and horizontal components of the Coriolis force (the latter being neglected in the traditional approximation) are obtained. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid-body velocity due to planetary rotation. The conservation of energy, angular momentum and Ertel's potential vorticity are ensured in both quasi- and non-hydrostatic systems.

[1]  F. Bouchut,et al.  Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography , 2014, Journal of Fluid Mechanics.

[2]  P. Dellar Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere , 2011, Journal of Fluid Mechanics.

[3]  T. Gerkema,et al.  Geophysical and astrophysical fluid dynamics beyond the traditional approximation , 2008 .

[4]  On the Hamiltonian formulation of the quasi‐hydrostatic equations , 1995 .

[5]  Edmond Dubois Résumé analytique de la théorie des marées telle qu'elle est établie dans la mécanique céleste de Laplace , 1885 .

[6]  Carl Eckart,et al.  Hydrodynamics of oceans and atmospheres , 1960 .

[7]  R. Salmon,et al.  Shallow water equations with a complete Coriolis force and topography , 2005 .

[8]  A. White,et al.  Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force , 1995 .

[9]  Darryl D. Holm,et al.  Euler – Poincaré Equations in Geophysical Fluid Dynamics 3 1 Introduction , 2002 .

[10]  Michiya Hayashi,et al.  The Importance of the Nontraditional Coriolis Terms in Large-Scale Motions in the Tropics Forced by Prescribed Cumulus Heating , 2012 .

[11]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[12]  W. H. Raymond,et al.  Equatorial Meridional Flows: Rotationally Induced Circulations , 2000 .

[13]  B. Hoskins,et al.  Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi‐hydrostatic and non‐hydrostatic , 2005 .

[14]  D. Moore,et al.  Inertial nonlinear equilibration of equatorial flows , 1997, Journal of Fluid Mechanics.

[15]  R. K. Wangsness Comments on `The Equations of Motion for a Shallow Rotating Atmosphere and the Traditional Approximation''. , 1970 .

[16]  Norman A. Phillips,et al.  The Equations of Motion for a Shallow Rotating Atmosphere and the “Traditional Approximation” , 1966 .

[17]  P. Dellar,et al.  Cross-equatorial flow through an abyssal channel under the complete Coriolis force: Two-dimensional solutions , 2011 .

[18]  George Veronis,et al.  Comments on Phillips' Proposed Simplification of the Equations of Motion for a Shallow Rotating Atmosphere , 1968 .

[19]  M. Suárez,et al.  A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models , 1994 .

[20]  A. Staniforth Exact stationary axisymmetric solutions of the Euler equations on β–γ planes , 2012 .

[21]  P. Dellar,et al.  The rôle of the complete Coriolis force in cross-equatorial flow of abyssal ocean currents , 2011 .

[22]  T Spitzer,et al.  Reply , 1998, Bone Marrow Transplantation.

[23]  R. Salmon HAMILTONIAN FLUID MECHANICS , 1988 .