Estimation of position-dependent transient heat source with the Kalman filter

This study deals with the solution of a state estimation problem within the Bayesian framework. Simulated temperature measurements are used in the inverse analysis, which is based on a nodal strategy that results on a linear estimation problem. The Kalman filter is then applied for the estimation of a transient heat source term, which also varies spatially. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of currently available infrared cameras.

[1]  J. Batsale,et al.  Bayesian approach for thermal diffusivity mapping from infrared images with spatially random heat pulse heating , 2008 .

[2]  J. Battaglia,et al.  Autoregressive algorithms and spatially random flash excitation for 2D non destructive evaluation with infrared cameras , 2004 .

[3]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[4]  Jean-Christophe Batsale,et al.  Processing of temperature field in chemical microreactors with infrared thermography , 2006 .

[5]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[6]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[7]  Yu. M. Matsevityi,et al.  An iterative filter for solution of the inverse heat-conduction problem , 1978 .

[8]  Helcio R. B. Orlande,et al.  Reconstruction of thermal conductivity and heat capacity using a tomographic approach , 2007 .

[9]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[10]  Renato Machado Cotta,et al.  Inverse analysis with integral transformed temperature fields: Identification of thermophysical properties in heterogeneous media , 2011 .

[11]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[12]  Helcio R. B. Orlande,et al.  Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications , 2012 .

[13]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[14]  M. Colaço,et al.  Application of a Bayesian Filter to Estimate Unknown Heat Fluxes in a Natural Convection Problem , 2011 .

[15]  J. Coyle Inverse Problems , 2004 .

[16]  Alexander Moultanovsky,et al.  Inverse Heat Conduction Problem Approach to Identify the Thermal Characteristics of Super-Hard Synthetic Materials , 2002 .

[17]  Helcio R. B. Orlande,et al.  STATE ESTIMATION PROBLEMS IN HEAT TRANSFER , 2012 .

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  J. Batsale,et al.  Nodal and modal strategies for longitudinal thermal diffusivity profile estimation: Application to the non destructive evaluation of SiC/SiC composites under uniaxial tensile tests , 2009 .

[20]  H. Orlande Thermal measurements and inverse techniques , 2011 .

[21]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[22]  D. Reungoat,et al.  Simultaneous velocity and diffusivity mapping in the case of 3-D transient heat diffusion: heat pulse thermography and IR image sequence analysis , 2008 .

[23]  Alexander Moultanovsky Mobile HVAC System Evaporator Optimization and Cooling Capacity Estimation by Means of Inverse Problem Solution , 2002 .

[24]  Jari P. Kaipio,et al.  The Bayesian Framework for Inverse Problems in Heat Transfer , 2011 .

[25]  J. Batsale,et al.  Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping , 2010 .

[26]  Helcio R. B. Orlande,et al.  Bayesian Estimation of Temperature-Dependent Thermophysical Properties and Transient Boundary Heat Flux , 2010 .

[27]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[28]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[29]  Nicholas Zabaras,et al.  Inverse Problems in Heat Transfer , 2009 .

[30]  George S. Dulikravich,et al.  Approximation of the likelihood function in the Bayesian technique for the solution of inverse problems , 2008 .

[31]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[32]  Yu. M. Matsevityi,et al.  Statistical identification of local heat-transfer parameters , 1983 .

[33]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[34]  Helcio R. B. Orlande,et al.  WITHDRAWN: Reconstruction of thermal conductivity and heat capacity using a tomographic approach , 2008 .

[35]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .