The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions

The semi-infinite strip x≥0, −1≤y≤1 is in equilibrium under no body forces, with the sides y=±1, x>0 free of tractions, and on the end x=0% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaiaacYcaaaa!4298!\[\sigma _{xx} (0,y) = f(y),\]% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadIhacaWG4baabeaakiaacIcacaaIWaGaaiilaiaadMha% caGGPaGaeyypa0Jaam4zaiaacIcacaWG5bGaaiykaiaacYcaaaa!4299!\[\sigma _{xx} (0,y) = g(y),\]where f(y), g(y) are independent, self-equilibrating tractions prescribed for y∈[−1, 1]. A rigorous proof is given that if f″, g″ are of bounded variation on [−1, 1], then this traction boundary value problem posesses a solution, and the stress field of this solution may be expanded, even onx=0, as a convergent series of the Papkovich-Fadle eigenfunctions. Thus these eigenfunctions are complete for the expansion of such data {f, g}.

[1]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[2]  G. B. Jeffery,et al.  Plane Stress and Plane Strain in Bipolar Co-Ordinates , 1921 .

[3]  Rct Smith,et al.  The Bending of a Semi-infinite Strip , 1952 .

[4]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[5]  J. Benthem,et al.  A LAPLACE TRANSFORM METHOD FOR THE SOLUTION OF SEMI-INFINITE AND FINITE STRIP PROBLEMS IN STRESS ANALYSIS , 1963 .

[6]  W. Shepherd,et al.  Generalized plane stress in a semi-infinite strip under arbitrary end-load , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  I︠a︡. S. Ufli︠a︡nd,et al.  Survey of articles on the applications of integral transforms in the theory of elasticity , 1965 .

[8]  R. W. Little,et al.  THE SEMI-INFINITE ELASTIC STRIP, , 1965 .

[9]  H. Bueckner ON A CLASS OF SINGULAR INTEGRAL EQUATIONS , 1966 .

[10]  G. Bierman A Particular Class of Singular Integral Equations , 1971 .

[11]  F. Erdogan,et al.  On the numerical solution of singular integral equations , 1972 .

[12]  G. Gupta An Integral Equation Approach to the Semi-Infinite Strip Problem , 1973 .

[13]  A Note on Semi-Infinite Strip Subjected to a Concentrated Load , 1974 .

[14]  D. Bogy Solution of the plane end problem for a semi-infinite elastic strip , 1975 .

[15]  R. D. Gregory A circular disc containing a radial edge crack opened by a constant internal pressure , 1977, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  D. Joseph,et al.  The Convergence of Biorthogonal Series for Biharmonic and Stokes Flow Edge Problems: Part II , 1977 .

[17]  R. D. Gregory Green's functions, bi-linear forms, and completeness of the eigenfunctions for the elastostatic strip and wedge , 1979 .

[18]  R. D. Gregory The semi-infinite strip x≥0, −1≤y≤1; completeness of the Papkovich-Fadle eigenfunctions when Φxx(0,y), Φyy(0,y) are prescribed , 1980 .