RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia

[1]  H. Dombret,et al.  Genetic identification of patients with AML older than 60 years achieving long-term survival with intensive chemotherapy. , 2021, Blood.

[2]  Hossein Khiabanian,et al.  A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia. , 2021, Blood.

[3]  R. Stam,et al.  High-throughput drug screening reveals Pyrvinium pamoate as effective candidate against pediatric MLL-rearranged acute myeloid leukemia , 2021, Translational oncology.

[4]  J. Desai,et al.  KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. , 2020, The New England journal of medicine.

[5]  D. Herranz,et al.  A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia , 2020, bioRxiv.

[6]  D. Birnbaum,et al.  A chemogenomic approach to identify personalized therapy for patients with relapse or refractory acute myeloid leukemia: results of a prospective feasibility study , 2020, Blood Cancer Journal.

[7]  Xiufeng Pang,et al.  Blocking STAT3 by Pyrvinium Pamoate Causes Metabolic Lethality in KRAS-mutant lung cancer. , 2020, Biochemical pharmacology.

[8]  Quincy A. Hathaway,et al.  Pyrvinium Pamoate Use in a B cell Acute Lymphoblastic Leukemia Model of the Bone Tumor Microenvironment , 2020, Pharmaceutical Research.

[9]  G. Gómez-López,et al.  MEK inhibition enhances the response to tyrosine kinase inhibitors in acute myeloid leukemia , 2019, Scientific Reports.

[10]  S. Asthana,et al.  Clonal selection with Ras pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. , 2019, Cancer discovery.

[11]  J. Tamburini,et al.  Impact of genotype in relapsed and refractory acute myeloid leukaemia patients treated with clofarabine and cytarabine: a retrospective study , 2019, British journal of haematology.

[12]  R. Larson,et al.  Evaluation of event-free survival as a robust end point in untreated acute myeloid leukemia (Alliance A151614). , 2019, Blood advances.

[13]  H. Kantarjian,et al.  Phase II Trial of MEK Inhibitor Binimetinib (MEK162) in RAS‐mutant Acute Myeloid Leukemia , 2019, Clinical lymphoma, myeloma & leukemia.

[14]  G. Sauvageau,et al.  Complex karyotype AML displays G2/M signature and hypersensitivity to PLK1 inhibition. , 2019, Blood advances.

[15]  B. Viollet,et al.  Knockdown of Human AMPK Using the CRISPR/Cas9 Genome-Editing System. , 2019, Methods in molecular biology.

[16]  Chien-Yuan Chen,et al.  Pyrvinium Pamoate Overcomes Cabozantinib-Resistance of FLT3-ITD AML Cells through Modulating the Mitochondria Functions and Signaling Pathways , 2018, Blood.

[17]  E. Atallah,et al.  Incorporating newer agents in the treatment of acute myeloid leukemia. , 2018, Leukemia research.

[18]  Beth Wilmot,et al.  Functional Genomic Landscape of Acute Myeloid Leukemia , 2018, Nature.

[19]  H. Dombret,et al.  Clonal interference of signaling mutations worsens prognosis in core-binding factor acute myeloid leukemia. , 2018, Blood.

[20]  C. Bloomfield,et al.  NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome , 2018, Leukemia.

[21]  Gregory P. Way,et al.  Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas , 2018, Cell reports.

[22]  Amirhossein Sahebkar,et al.  The novel role of pyrvinium in cancer therapy , 2018, Journal of cellular physiology.

[23]  Markus G. Manz,et al.  Molecular Minimal Residual Disease in Acute Myeloid Leukemia , 2018, The New England journal of medicine.

[24]  G. Hampton,et al.  A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types , 2018, npj Precision Oncology.

[25]  J. Tamburini,et al.  RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia , 2018, Leukemia.

[26]  Jesse D. Gelles,et al.  Dual suppression of inner and outer mitochondrial membrane functions augments apoptotic responses to oncogenic MAPK inhibition , 2018, Cell Death & Disease.

[27]  R. Premont,et al.  Niclosamide: Beyond an antihelminthic drug , 2017, Cellular Signalling.

[28]  A. Hauschild,et al.  Adjuvant Dabrafenib plus Trametinib in Stage III BRAF‐Mutated Melanoma , 2017, The New England journal of medicine.

[29]  M. Carroll,et al.  Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. , 2017, Cancer discovery.

[30]  Frank McCormick,et al.  RAS Proteins and Their Regulators in Human Disease , 2017, Cell.

[31]  M. L. Le Beau,et al.  Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. , 2017, Blood.

[32]  M. Landthaler,et al.  An immediate–late gene expression module decodes ERK signal duration , 2017, Molecular systems biology.

[33]  A. Ferrando,et al.  Synergistic antileukemic therapies in NOTCH1-induced T-ALL , 2017, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Eric S. Lander,et al.  Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras , 2017, Cell.

[35]  Bob Löwenberg,et al.  Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. , 2017, Blood.

[36]  John G Doench,et al.  A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. , 2016, Cell metabolism.

[37]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[38]  K. Shokat,et al.  Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design , 2016, Nature Reviews Drug Discovery.

[39]  H. Kantarjian,et al.  Activity of the oral mitogen‐activated protein kinase kinase inhibitor trametinib in RAS‐mutant relapsed or refractory myeloid malignancies , 2016, Cancer.

[40]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[41]  Changfu Wang,et al.  Pyrvinium selectively induces apoptosis of lymphoma cells through impairing mitochondrial functions and JAK2/STAT5. , 2016, Biochemical and biophysical research communications.

[42]  Huafeng Xie,et al.  Polycomb Repressive Complex 2 Is a Barrier to KRAS-Driven Inflammation and Epithelial-Mesenchymal Transition in Non-Small-Cell Lung Cancer. , 2016, Cancer cell.

[43]  S. Whittaker,et al.  How I treat mycosis fungoides and Sézary syndrome. , 2016, Blood.

[44]  A. Baruchel,et al.  Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network , 2015, Nature Genetics.

[45]  S. Cook,et al.  MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road , 2015, Nature Reviews Cancer.

[46]  C. Chuah,et al.  Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration , 2015, Oncotarget.

[47]  T. Golub,et al.  The Genomic Landscape of Juvenile Myelomonocytic Leukemia , 2015, Nature Genetics.

[48]  B. Viollet,et al.  Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. , 2015, Cell reports.

[49]  N. Gray,et al.  Identification of novel therapeutic targets in acute leukemias with NRAS mutations using a pharmacologic approach. , 2015, Blood.

[50]  N. Ratner,et al.  A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor , 2015, Nature Reviews Cancer.

[51]  E. Pasmant,et al.  Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations? , 2014, European Journal of Human Genetics.

[52]  S. Lowe,et al.  Preclinical efficacy of MEK inhibition in Nras-mutant AML. , 2014, Blood.

[53]  S. Fesik,et al.  Drugging the undruggable RAS: Mission Possible? , 2014, Nature Reviews Drug Discovery.

[54]  Eric Legius,et al.  PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies , 2014, Nature.

[55]  G. Shulman,et al.  Niclosamide ethanolamine improves blood glycemic control and reduces hepatic steatosis in mice , 2014, Nature Network Boston.

[56]  Krister Wennerberg,et al.  Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies , 2014, Scientific Reports.

[57]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[58]  Scott E. Smith,et al.  Phase II Study of the Oral MEK Inhibitor Selumetinib in Advanced Acute Myelogenous Leukemia: A University of Chicago Phase II Consortium Trial , 2013, Clinical Cancer Research.

[59]  D. Felsher,et al.  BCL-2 inhibition with ABT-737 prolongs survival in an NRAS/BCL-2 mouse model of AML by targeting primitive LSK and progenitor cells. , 2013, Blood.

[60]  Jun S. Song,et al.  Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.

[61]  Y. Harada,et al.  Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration , 2012, Front. Oncol..

[62]  Y. Harada,et al.  Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. , 2012, Cancer letters.

[63]  N. Socci,et al.  Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. , 2012, The New England journal of medicine.

[64]  Bruce J. Melancon,et al.  Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. , 2010, Nature chemical biology.

[65]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[66]  J. Tamburini,et al.  Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. , 2009, Blood.

[67]  P. Yaswen,et al.  A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells , 2009, PloS one.

[68]  Sungjoon Kim,et al.  Ba/F3 cells and their use in kinase drug discovery , 2007, Current opinion in oncology.

[69]  T. Haferlach,et al.  Implications of NRAS mutations in AML: a study of 2502 patients. , 2006, Blood.

[70]  R. Berger,et al.  NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogénétique Hématologique , 2006, Leukemia.

[71]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Hills,et al.  RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. , 2005, Blood.

[73]  G. Laurent,et al.  Antileukemic activity of rapamycin in acute myeloid leukemia. , 2005, Blood.

[74]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[75]  F. Verdier,et al.  Erythropoietin‐induced erythroid differentiation of the human erythroleukemia cell line TF‐1 correlates with impaired STAT5 activation. , 1996, The EMBO journal.

[76]  C. Schölzel,et al.  Stimulation of proliferation and differentiation of acute myeloid leukemia cells on a bone marrow stroma in culture. , 1985, Experimental hematology.