Neuroblastoma-targeted nanoparticles entrapping siRNA specifically knockdown ALK.

[1]  Joshua C. Johnson,et al.  Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study , 2010, The Lancet.

[2]  Mauro Ferrari,et al.  Sustained small interfering RNA delivery by mesoporous silicon particles. , 2010, Cancer research.

[3]  A. Sood,et al.  The dicey role of Dicer: implications for RNAi therapy. , 2010, Cancer research.

[4]  S. Simões,et al.  Design of peptide-targeted liposomes containing nucleic acids. , 2010, Biochimica et biophysica acta.

[5]  K. G. Rajeev,et al.  Rational design of cationic lipids for siRNA delivery , 2010, Nature Biotechnology.

[6]  D. Ribatti,et al.  Recent advances in targeted anti-vasculature therapy: the neuroblastoma model. , 2009, Current drug targets.

[7]  G. Tonini,et al.  Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. , 2009, Cancer research.

[8]  M. Cilli,et al.  Anti-IL-10R antibody improves the therapeutic efficacy of targeted liposomal oligonucleotides. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[9]  B. Stillman,et al.  Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug , 2009, Nature Biotechnology.

[10]  R. Palmer,et al.  Anaplastic lymphoma kinase: signalling in development and disease , 2009, The Biochemical journal.

[11]  S. Groshen,et al.  Iodine-131--metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy phase I study. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  A. Look,et al.  Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy , 2009, Expert review of anticancer therapy.

[13]  Daniel G. Anderson,et al.  Knocking down barriers: advances in siRNA delivery , 2009, Nature Reviews Drug Discovery.

[14]  H. Carén,et al.  High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. , 2008, The Biochemical journal.

[15]  D. Ribatti,et al.  Enhanced Antitumor Efficacy of Clinical-Grade Vasculature-Targeted Liposomal Doxorubicin , 2008, Clinical Cancer Research.

[16]  Gudrun Schleiermacher,et al.  Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma , 2008, Nature.

[17]  S. Ogawa,et al.  Oncogenic mutations of ALK kinase in neuroblastoma , 2008, Nature.

[18]  John M. Maris,et al.  Identification of ALK as a major familial neuroblastoma predisposition gene , 2008, Nature.

[19]  D. Gary Gilliland,et al.  Activating mutations in ALK provide a therapeutic target in neuroblastoma , 2008, Nature.

[20]  L. Ellis,et al.  Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. , 2008, Journal of the National Cancer Institute.

[21]  P. Cullis,et al.  Liposomal nanomedicines , 2008, Expert opinion on drug delivery.

[22]  G. Klement,et al.  Successful antiangiogenic therapy for neuroblastoma with thalidomide. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  M. Devoto,et al.  Genetic Predisposition to Familial Neuroblastoma: Identification of Two Novel Genomic Regions at 2p and 12p , 2007, Human Heredity.

[24]  Chiara Brignole,et al.  Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. , 2006, Cancer research.

[25]  Chiara Brignole,et al.  Effect of bortezomib on human neuroblastoma cell growth, apoptosis, and angiogenesis. , 2006, Journal of the National Cancer Institute.

[26]  Matthias John,et al.  RNAi-mediated gene silencing in non-human primates , 2006, Nature.

[27]  R. Taulli,et al.  Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. , 2006, Blood.

[28]  P. Reuland,et al.  A phase I study of neuroblastoma with the anti-ganglioside GD2 antibody 14.G2a , 2005, Cancer Immunology, Immunotherapy.

[29]  T. Allen,et al.  Immune cell-mediated antitumor activities of GD2-targeted liposomal c-myb antisense oligonucleotides containing CpG motifs. , 2004, Journal of the National Cancer Institute.

[30]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[31]  M. Ponzoni,et al.  Bioavailability of antisense oligonucleotides in neuroblastoma cells: comparison of efficacy among different types of molecules , 2004, Journal of Neuro-Oncology.

[32]  D. Ribatti,et al.  Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. , 2003, Cancer research.

[33]  D. Ribatti,et al.  Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[34]  F. Pastorino,et al.  Anti-GD2 monoclonal antibody immunotherapy: a promising strategy in the prevention of neuroblastoma relapse. , 2003, Cancer letters.

[35]  T. Allen,et al.  In vitro and in vivo antitumor activity of liposomal fenretinide targeted to human neuroblastoma , 2003, International journal of cancer.

[36]  E. Moase,et al.  Doxorubicin-loaded Fab' fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. , 2003, Cancer research.

[37]  Zuzana Dobbie,et al.  Processing of gene expression data generated by quantitative real-time RT-PCR. , 2002, BioTechniques.

[38]  D. Stuart,et al.  Targeted delivery of antisense oligonucleotides in cancer. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[39]  D. Stuart,et al.  A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1 , 2000, Cancer Gene Therapy.

[40]  B. Calabretta,et al.  Delivery of c-myb Antisense Oligodeoxynucleotides to Human Neuroblastoma Cells Via Disialoganglioside GD2-Targeted Immunoliposomes: Antitumor Effects. , 2000, Journal of the National Cancer Institute.

[41]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[42]  T. Allen,et al.  GD2‐mediated melanoma cell targeting and cytotoxicity of liposome‐entrapped fenretinide , 1999, International journal of cancer.

[43]  D. Spiller,et al.  Selecting optimal oligonucleotide composition for maximal antisense effect following streptolysin O-mediated delivery into human leukaemia cells. , 1998, Nucleic acids research.

[44]  S. Kong,et al.  Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. , 1995, Biochemistry.

[45]  R. Jain,et al.  Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. , 1994, Cancer research.

[46]  K. Mujoo,et al.  Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. , 1987, Cancer research.

[47]  D. Cheresh,et al.  Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. , 1984, Cancer research.

[48]  D. Cheresh,et al.  Localization of the gangliosides GD2 and GD3 in adhesion plaques and on the surface of human melanoma cells. , 1984, Proceedings of the National Academy of Sciences of the United States of America.