An Improved FPT Algorithm for Independent Feedback Vertex Set

We study the Independent Feedback Vertex Set problem - a variant of the classic Feedback Vertex Set problem where, given a graph $G$ and an integer $k$, the problem is to decide whether there exists a vertex set $S\subseteq V(G)$ such that $G\setminus S$ is a forest and $S$ is an independent set of size at most $k$. We present an $O^\ast((1+\varphi^{2})^{k})$-time FPT algorithm for this problem, where $\varphi<1.619$ is the golden ratio, improving the previous fastest $O^\ast(4.1481^{k})$-time algorithm given by Agrawal et al [IPEC 2016]. The exponential factor in our time complexity bound matches the fastest deterministic FPT algorithm for the classic Feedback Vertex Set problem. On the technical side, the main novelty is a refined measure of an input instance in a branching process, that allows for a simpler and more concise description and analysis of the algorithm.

[1]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[2]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[3]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[4]  Saket Saurabh,et al.  Improved Algorithms and Combinatorial Bounds for Independent Feedback Vertex Set , 2017, IPEC.

[5]  Marcin Pilipczuk,et al.  An Improved FPT Algorithm for Independent Feedback Vertex Set , 2020, Theory of Computing Systems.

[6]  Michal Pilipczuk,et al.  On Group Feedback Vertex Set Parameterized by the Size of the Cutset , 2012, WG.

[7]  Saket Saurabh,et al.  Linear Time Parameterized Algorithms for Subset Feedback Vertex Set , 2015, ICALP.

[8]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[9]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[10]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[11]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[12]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[13]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[14]  Yoichi Iwata,et al.  Linear-time Kernelization for Feedback Vertex Set , 2016, ICALP.

[15]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[16]  Geevarghese Philip,et al.  On Parameterized Independent Feedback Vertex Set , 2011, Theor. Comput. Sci..

[17]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[18]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[19]  Saket Saurabh,et al.  Simultaneous Feedback Vertex Set: A Parameterized Perspective , 2015, TOCT.

[20]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[21]  Michael J. Pelsmajer,et al.  Parameterized Algorithms for Feedback Vertex Set , 2004, IWPEC.

[22]  Geevarghese Philip,et al.  FPT Algorithms for Connected Feedback Vertex Set , 2010, WALCOM.

[23]  Sylvain Guillemot,et al.  FPT algorithms for path-transversal and cycle-transversal problems , 2011, Discret. Optim..

[24]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[25]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..

[26]  Polish Ministry Subset feedback vertex set is fixed-parameter tractable , 2011 .