Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes
暂无分享,去创建一个
Raúl A. Feijóo | E. A. de Souza Neto | Antonio André Novotny | S. M. Giusti | E. A. S. Neto | R. Feijóo | A. Novotny | S. Giusti
[1] J. D. Eshelby. The elastic energy-momentum tensor , 1975 .
[2] Donald J. Cleland,et al. A new approach to modelling the effective thermal conductivity of heterogeneous materials , 2006 .
[3] S. Nazarov,et al. Self–adjoint Extensions for the Neumann Laplacian and Applications , 2006 .
[4] Alexander Movchan,et al. Asymptotic Analysis of Fields in Multi-Structures , 1999 .
[5] Jan Sokolowski,et al. Asymptotic analysis of shape functionals , 2003 .
[6] Michael Vogelius,et al. Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .
[7] Jan Sokolowski,et al. Optimality Conditions for Simultaneous Topology and Shape Optimization , 2003, SIAM J. Control. Optim..
[8] J. Schröder,et al. Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains , 1999 .
[9] R. Hill. A self-consistent mechanics of composite materials , 1965 .
[10] Bessem Samet,et al. The Topological Asymptotic for the Helmholtz Equation , 2003, SIAM J. Control. Optim..
[11] Jan Sokoƒowski,et al. TOPOLOGICAL DERIVATIVES OF SHAPE FUNCTIONALS FOR ELASTICITY SYSTEMS* , 2001 .
[12] Philippe Guillaume,et al. The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..
[13] M. Masmoudi,et al. Crack detection by the topological gradient method , 2008 .
[14] Masmoudi,et al. Image restoration and classification by topological asymptotic expansion , 2006 .
[15] Jan Sokolowski,et al. Modelling of topological derivatives for contact problems , 2005, Numerische Mathematik.
[16] G. Paulino,et al. Effective thermal conductivity of two-phase functionally graded particulate composites , 2005 .
[17] Jan Sokolowski,et al. The Topological Derivative of the Dirichlet Integral Under Formation of a Thin Ligament , 2004 .
[18] W. Ames. Mathematics in Science and Engineering , 1999 .
[19] Schulte,et al. Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. , 1996, Physical review. B, Condensed matter.
[20] Ph. Guillaume,et al. Topological Sensitivity and Shape Optimization for the Stokes Equations , 2004, SIAM J. Control. Optim..
[21] Bojan B. Guzina,et al. From imaging to material identification: A generalized concept of topological sensitivity , 2007 .
[22] M. Burger,et al. Incorporating topological derivatives into level set methods , 2004 .
[23] J. Cea,et al. The shape and topological optimizations connection , 2000 .
[24] G. Feijoo,et al. A new method in inverse scattering based on the topological derivative , 2004 .
[25] T. Lewiński,et al. Energy change due to the appearance of cavities in elastic solids , 2003 .
[27] H. Ammari,et al. Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .
[28] M. Masmoudi,et al. Application of the topological gradient to image restoration and edge detection. , 2008 .
[29] Bessem Samet,et al. The topological asymptotic expansion for the Maxwell equations and some applications , 2005 .
[30] Ignacio Larrabide,et al. Topological derivative: A tool for image processing , 2008 .
[31] Raúl A. Feijóo,et al. THE TOPOLOGICAL DERIVATIVE FOR THE POISSON'S PROBLEM , 2003 .
[32] Martin Burger,et al. Phase-Field Relaxation of Topology Optimization with Local Stress Constraints , 2006, SIAM J. Control. Optim..
[33] J. Zolésio,et al. Introduction to shape optimization : shape sensitivity analysis , 1992 .
[34] A. Sousa,et al. Effective thermal conductivity of heterogeneous multi-component materials: an SPH implementation , 2007 .
[35] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[36] M. Gurtin,et al. Configurational Forces as Basic Concepts of Continuum Physics , 1999 .
[37] Edward J. Haug,et al. Design Sensitivity Analysis of Structural Systems , 1986 .
[38] J. Michel,et al. Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .
[39] J. Craggs. Applied Mathematical Sciences , 1973 .
[40] J. Auriault. Effective macroscopic description for heat conduction in periodic composites , 1983 .
[41] P. M. Naghdi,et al. On continuum thermodynamics , 1972 .
[42] S. Amstutz. THE TOPOLOGICAL ASYMPTOTIC FOR THE NAVIER-STOKES EQUATIONS , 2005 .
[43] Jan Sokolowski,et al. On the Topological Derivative in Shape Optimization , 1999 .
[44] Ph. Guillaume,et al. The Topological Asymptotic Expansion for the Dirichlet Problem , 2002, SIAM J. Control. Optim..
[45] Marc Bonnet,et al. Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain , 2006 .
[46] Raúl A. Feijóo,et al. Second order topological sensitivity analysis , 2007 .
[47] Heiko Andrä,et al. A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..
[48] P. Royer,et al. Double conductivity media: a comparison between phenomenological and homogenization approaches , 1993 .
[49] F. Murat,et al. Sur le controle par un domaine géométrique , 1976 .
[50] Samuel Amstutz,et al. Sensitivity analysis with respect to a local perturbation of the material property , 2006, Asymptot. Anal..
[51] R. Feijóo,et al. Topological sensitivity analysis , 2003 .
[52] J. Mandel,et al. Plasticité classique et viscoplasticité , 1972 .
[53] David Rubin,et al. Introduction to Continuum Mechanics , 2009 .
[54] Jan Sokołowski b. Energy change due to the appearance of cavities in elastic solids , 2003 .
[55] Bojan B. Guzina,et al. Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics , 2006 .
[56] Antonio André Novotny,et al. Topological sensitivity analysis of inclusion in two-dimensional linear elasticity , 2008 .
[57] Raúl A. Feijóo,et al. Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem , 2007 .