Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes

Abstract This paper proposes a closed form expression for the sensitivity of the macroscopic heat conductivity tensor for two-dimensional problems to topological microstructural changes of the underlying material. The sensitivity formula is remarkably simple. It is derived by applying the concept of topological derivative within a variational multi-scale framework for steady-state heat conduction where the macroscopic temperature gradient and heat flux are defined as volume averages of their microscopic counterparts over a representative volume element (RVE) of material. The classical Fourier law is assumed to hold at the scale referred to as microscopic (the RVE). The derived sensitivity – a symmetric second order tensor field over the RVE domain – measures how the estimated macroscopic conductivity tensor changes when a small circular inclusion is introduced at the micro-scale. The proposed formula finds potential application in the design and optimisation of heat conducting materials.

[1]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[2]  Donald J. Cleland,et al.  A new approach to modelling the effective thermal conductivity of heterogeneous materials , 2006 .

[3]  S. Nazarov,et al.  Self–adjoint Extensions for the Neumann Laplacian and Applications , 2006 .

[4]  Alexander Movchan,et al.  Asymptotic Analysis of Fields in Multi-Structures , 1999 .

[5]  Jan Sokolowski,et al.  Asymptotic analysis of shape functionals , 2003 .

[6]  Michael Vogelius,et al.  Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .

[7]  Jan Sokolowski,et al.  Optimality Conditions for Simultaneous Topology and Shape Optimization , 2003, SIAM J. Control. Optim..

[8]  J. Schröder,et al.  Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains , 1999 .

[9]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[10]  Bessem Samet,et al.  The Topological Asymptotic for the Helmholtz Equation , 2003, SIAM J. Control. Optim..

[11]  Jan Sokoƒowski,et al.  TOPOLOGICAL DERIVATIVES OF SHAPE FUNCTIONALS FOR ELASTICITY SYSTEMS* , 2001 .

[12]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[13]  M. Masmoudi,et al.  Crack detection by the topological gradient method , 2008 .

[14]  Masmoudi,et al.  Image restoration and classification by topological asymptotic expansion , 2006 .

[15]  Jan Sokolowski,et al.  Modelling of topological derivatives for contact problems , 2005, Numerische Mathematik.

[16]  G. Paulino,et al.  Effective thermal conductivity of two-phase functionally graded particulate composites , 2005 .

[17]  Jan Sokolowski,et al.  The Topological Derivative of the Dirichlet Integral Under Formation of a Thin Ligament , 2004 .

[18]  W. Ames Mathematics in Science and Engineering , 1999 .

[19]  Schulte,et al.  Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. , 1996, Physical review. B, Condensed matter.

[20]  Ph. Guillaume,et al.  Topological Sensitivity and Shape Optimization for the Stokes Equations , 2004, SIAM J. Control. Optim..

[21]  Bojan B. Guzina,et al.  From imaging to material identification: A generalized concept of topological sensitivity , 2007 .

[22]  M. Burger,et al.  Incorporating topological derivatives into level set methods , 2004 .

[23]  J. Cea,et al.  The shape and topological optimizations connection , 2000 .

[24]  G. Feijoo,et al.  A new method in inverse scattering based on the topological derivative , 2004 .

[25]  T. Lewiński,et al.  Energy change due to the appearance of cavities in elastic solids , 2003 .

[27]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[28]  M. Masmoudi,et al.  Application of the topological gradient to image restoration and edge detection. , 2008 .

[29]  Bessem Samet,et al.  The topological asymptotic expansion for the Maxwell equations and some applications , 2005 .

[30]  Ignacio Larrabide,et al.  Topological derivative: A tool for image processing , 2008 .

[31]  Raúl A. Feijóo,et al.  THE TOPOLOGICAL DERIVATIVE FOR THE POISSON'S PROBLEM , 2003 .

[32]  Martin Burger,et al.  Phase-Field Relaxation of Topology Optimization with Local Stress Constraints , 2006, SIAM J. Control. Optim..

[33]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[34]  A. Sousa,et al.  Effective thermal conductivity of heterogeneous multi-component materials: an SPH implementation , 2007 .

[35]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[36]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[37]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[38]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[39]  J. Craggs Applied Mathematical Sciences , 1973 .

[40]  J. Auriault Effective macroscopic description for heat conduction in periodic composites , 1983 .

[41]  P. M. Naghdi,et al.  On continuum thermodynamics , 1972 .

[42]  S. Amstutz THE TOPOLOGICAL ASYMPTOTIC FOR THE NAVIER-STOKES EQUATIONS , 2005 .

[43]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[44]  Ph. Guillaume,et al.  The Topological Asymptotic Expansion for the Dirichlet Problem , 2002, SIAM J. Control. Optim..

[45]  Marc Bonnet,et al.  Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain , 2006 .

[46]  Raúl A. Feijóo,et al.  Second order topological sensitivity analysis , 2007 .

[47]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[48]  P. Royer,et al.  Double conductivity media: a comparison between phenomenological and homogenization approaches , 1993 .

[49]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[50]  Samuel Amstutz,et al.  Sensitivity analysis with respect to a local perturbation of the material property , 2006, Asymptot. Anal..

[51]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[52]  J. Mandel,et al.  Plasticité classique et viscoplasticité , 1972 .

[53]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[54]  Jan Sokołowski b Energy change due to the appearance of cavities in elastic solids , 2003 .

[55]  Bojan B. Guzina,et al.  Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics , 2006 .

[56]  Antonio André Novotny,et al.  Topological sensitivity analysis of inclusion in two-dimensional linear elasticity , 2008 .

[57]  Raúl A. Feijóo,et al.  Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem , 2007 .