Comparing metrics for mixed quantum states: Sjoqvist and Bures

It is known there are infinitely many distinguishability metrics for mixed quantum states. This freedom, in turn, leads to metric-dependent interpretations of physically meaningful geometric quantities such as complexity and volume of quantum states. In this paper, we first present an explicit and unabridged mathematical discussion on the relation between the Sjoqvist metric and the Bures metric for arbitrary nondegenerate mixed quantum states, using the notion of decompositions of density operators by means of ensembles of pure quantum states. Then, to enhance our comprehension of the difference between these two metrics from a physics standpoint, we compare the formal expressions of these two metrics for arbitrary thermal quantum states specifying quantum systems in equilibrium with a reservoir at non-zero temperature. For illustrative purposes, we show the difference between these two metrics in the case of a simple physical system characterized by a spin-qubit in an arbitrarily oriented uniform and stationary external magnetic field in thermal equilibrium with a finite-temperature bath. Finally, we compare the Bures and Sjoqvist metrics in terms of their monotonicity property.

[1]  C. Cafaro,et al.  Bures and Sjöqvist metrics over thermal state manifolds for spin qubits and superconducting flux qubits , 2023, The European Physical Journal Plus.

[2]  C. Cafaro,et al.  Complexity of pure and mixed qubit geodesic paths on curved manifolds , 2022, Physical Review D.

[3]  P. Alsing,et al.  Distribution of density matrices at fixed purity for arbitrary dimensions , 2022, Physical Review Research.

[4]  N. Paunkovi'c,et al.  Information geometry of quantum critical submanifolds: Relevant, marginal, and irrelevant operators , 2022, Physical Review B.

[5]  C. Cafaro,et al.  Information geometry for Fermi–Dirac and Bose–Einstein quantum statistics , 2021, Physica A: Statistical Mechanics and its Applications.

[6]  Stefano Mancini,et al.  Thermodynamic length, geometric efficiency and Legendre invariance , 2021, Physica A: Statistical Mechanics and its Applications.

[7]  F. Strocchi $$^*$$ Thermal States , 2021, Theoretical and Mathematical Physics.

[8]  N. Paunkovi'c,et al.  Interferometric geometry from symmetry-broken Uhlmann gauge group with applications to topological phase transitions , 2020, 2010.06629.

[9]  E. Sjöqvist Geometry along evolution of mixed quantum states , 2019, Physical Review Research.

[10]  Barry Simon,et al.  Loewner's Theorem on Monotone Matrix Functions , 2019, Grundlehren der mathematischen Wissenschaften.

[11]  D. Brody,et al.  Evolution speed of open quantum dynamics , 2019, Physical Review Research.

[12]  C. Cafaro,et al.  Information geometric methods for complexity. , 2017, Chaos.

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[15]  Sourav Chatterjee,et al.  A note about the uniform distribution on the intersection of a simplex and a sphere , 2010, 1011.4043.

[16]  G. Ortiz The geometry of quantum phase transitions , 2010 .

[17]  Carlo Cafaro,et al.  Works on an information geometrodynamical approach to chaos , 2008, 0810.4639.

[18]  Carlo Cafaro,et al.  The Information Geometry of Chaos , 2008, 1601.07935.

[19]  T. Furuta Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation , 2008 .

[20]  T. Isola,et al.  On a correspondence between regular and non-regular operator monotone functions , 2008, 0808.0468.

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  M. Pettini Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics , 2007, 0711.1484.

[23]  Paolo Zanardi,et al.  Information-theoretic differential geometry of quantum phase transitions. , 2007, Physical review letters.

[24]  Paolo Zanardi,et al.  Bures metric over thermal state manifolds and quantum criticality , 2007, 0707.2772.

[25]  N. Paunkovic,et al.  Ground state overlap and quantum phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  L. Kwek,et al.  Kinematic approach to the mixed state geometric phase in nonunitary evolution. , 2004, Physical review letters.

[27]  E. Sudarshan,et al.  Volumes of compact manifolds , 2002, math-ph/0210033.

[28]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[29]  A. Pati,et al.  Geometric phases for mixed states in interferometry. , 2000, Physical review letters.

[30]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[31]  M. Ozawa Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.

[32]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[33]  P. Slater Monotonicity Properties of Certain Measures over the Two-Level Quantum Systems , 1999, quant-ph/9904014.

[34]  P. Slater A priori probabilities of separable quantum states , 1998, quant-ph/9810026.

[35]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[36]  M. Plenio,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[37]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[38]  D. Petz Monotone metrics on matrix spaces , 1996 .

[39]  D. Petz,et al.  Geometries of quantum states , 1996 .

[40]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[41]  A. Uhlmann GEOMETRIC PHASES AND RELATED STRUCTURES , 1995 .

[42]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[43]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[44]  M. Hübner Explicit computation of the Bures distance for density matrices , 1992 .

[45]  A. Uhlmann The Metric of Bures and the Geometric Phase. , 1992 .

[46]  N. Chentsov,et al.  Markov invariant geometry on manifolds of states , 1991 .

[47]  A. Uhlmann A gauge field governing parallel transport along mixed states , 1991 .

[48]  M. Kwong Some results on matrix monotone functions , 1989 .

[49]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[50]  Armin Uhlmann,et al.  Parallel transport and “quantum holonomy” along density operators , 1986 .

[51]  L. Campbell An extended Čencov characterization of the information metric , 1986 .

[52]  W. Wootters Statistical distance and Hilbert space , 1981 .

[53]  M. Marinov Invariant volumes of compact groups , 1980 .

[54]  J. Provost,et al.  Riemannian structure on manifolds of quantum states , 1980 .

[55]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[56]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[57]  J. Schwinger THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[59]  Karl Löwner Über monotone Matrixfunktionen , 1934 .