Comparing metrics for mixed quantum states: Sjoqvist and Bures
暂无分享,去创建一个
C. Cafaro | P. Alsing | C. Lupo | S. Mancini | H. Quevedo | O. Luongo
[1] C. Cafaro,et al. Bures and Sjöqvist metrics over thermal state manifolds for spin qubits and superconducting flux qubits , 2023, The European Physical Journal Plus.
[2] C. Cafaro,et al. Complexity of pure and mixed qubit geodesic paths on curved manifolds , 2022, Physical Review D.
[3] P. Alsing,et al. Distribution of density matrices at fixed purity for arbitrary dimensions , 2022, Physical Review Research.
[4] N. Paunkovi'c,et al. Information geometry of quantum critical submanifolds: Relevant, marginal, and irrelevant operators , 2022, Physical Review B.
[5] C. Cafaro,et al. Information geometry for Fermi–Dirac and Bose–Einstein quantum statistics , 2021, Physica A: Statistical Mechanics and its Applications.
[6] Stefano Mancini,et al. Thermodynamic length, geometric efficiency and Legendre invariance , 2021, Physica A: Statistical Mechanics and its Applications.
[7] F. Strocchi. $$^*$$ Thermal States , 2021, Theoretical and Mathematical Physics.
[8] N. Paunkovi'c,et al. Interferometric geometry from symmetry-broken Uhlmann gauge group with applications to topological phase transitions , 2020, 2010.06629.
[9] E. Sjöqvist. Geometry along evolution of mixed quantum states , 2019, Physical Review Research.
[10] Barry Simon,et al. Loewner's Theorem on Monotone Matrix Functions , 2019, Grundlehren der mathematischen Wissenschaften.
[11] D. Brody,et al. Evolution speed of open quantum dynamics , 2019, Physical Review Research.
[12] C. Cafaro,et al. Information geometric methods for complexity. , 2017, Chaos.
[13] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[14] Doreen Eichel,et al. Data Analysis A Bayesian Tutorial , 2016 .
[15] Sourav Chatterjee,et al. A note about the uniform distribution on the intersection of a simplex and a sphere , 2010, 1011.4043.
[16] G. Ortiz. The geometry of quantum phase transitions , 2010 .
[17] Carlo Cafaro,et al. Works on an information geometrodynamical approach to chaos , 2008, 0810.4639.
[18] Carlo Cafaro,et al. The Information Geometry of Chaos , 2008, 1601.07935.
[19] T. Furuta. Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation , 2008 .
[20] T. Isola,et al. On a correspondence between regular and non-regular operator monotone functions , 2008, 0808.0468.
[21] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[22] M. Pettini. Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics , 2007, 0711.1484.
[23] Paolo Zanardi,et al. Information-theoretic differential geometry of quantum phase transitions. , 2007, Physical review letters.
[24] Paolo Zanardi,et al. Bures metric over thermal state manifolds and quantum criticality , 2007, 0707.2772.
[25] N. Paunkovic,et al. Ground state overlap and quantum phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] L. Kwek,et al. Kinematic approach to the mixed state geometric phase in nonunitary evolution. , 2004, Physical review letters.
[27] E. Sudarshan,et al. Volumes of compact manifolds , 2002, math-ph/0210033.
[28] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[29] A. Pati,et al. Geometric phases for mixed states in interferometry. , 2000, Physical review letters.
[30] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .
[31] M. Ozawa. Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.
[32] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[33] P. Slater. Monotonicity Properties of Certain Measures over the Two-Level Quantum Systems , 1999, quant-ph/9904014.
[34] P. Slater. A priori probabilities of separable quantum states , 1998, quant-ph/9810026.
[35] M. Lewenstein,et al. Volume of the set of separable states , 1998, quant-ph/9804024.
[36] M. Plenio,et al. Entanglement measures and purification procedures , 1997, quant-ph/9707035.
[37] M. Plenio,et al. Quantifying Entanglement , 1997, quant-ph/9702027.
[38] D. Petz. Monotone metrics on matrix spaces , 1996 .
[39] D. Petz,et al. Geometries of quantum states , 1996 .
[40] Schumacher,et al. Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.
[41] A. Uhlmann. GEOMETRIC PHASES AND RELATED STRUCTURES , 1995 .
[42] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[43] R. Jozsa,et al. A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .
[44] M. Hübner. Explicit computation of the Bures distance for density matrices , 1992 .
[45] A. Uhlmann. The Metric of Bures and the Geometric Phase. , 1992 .
[46] N. Chentsov,et al. Markov invariant geometry on manifolds of states , 1991 .
[47] A. Uhlmann. A gauge field governing parallel transport along mixed states , 1991 .
[48] M. Kwong. Some results on matrix monotone functions , 1989 .
[49] Aharonov,et al. Phase change during a cyclic quantum evolution. , 1987, Physical review letters.
[50] Armin Uhlmann,et al. Parallel transport and “quantum holonomy” along density operators , 1986 .
[51] L. Campbell. An extended Čencov characterization of the information metric , 1986 .
[52] W. Wootters. Statistical distance and Hilbert space , 1981 .
[53] M. Marinov. Invariant volumes of compact groups , 1980 .
[54] J. Provost,et al. Riemannian structure on manifolds of quantum states , 1980 .
[55] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[56] D. Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .
[57] J. Schwinger. THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[58] E. M.,et al. Statistical Mechanics , 2021, Manual for Theoretical Chemistry.
[59] Karl Löwner. Über monotone Matrixfunktionen , 1934 .