Modeling Task fMRI Data via Deep Convolutional Autoencoder
暂无分享,去创建一个
Yu Zhao | Heng Huang | Xintao Hu | Lei Guo | Tianming Liu | Junwei Han | Qinglin Dong | Milad Makkie | Yu Zhao | Lei Guo | Junwei Han | Xintao Hu | Tianming Liu | Qinglin Dong | Heng Huang | Milad Makkie
[1] R. L. Valois,et al. The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.
[2] Karl J. Friston,et al. Statistical parametric maps in functional imaging: A general linear approach , 1994 .
[3] T. Sejnowski,et al. Human Brain Mapping 6:368–372(1998) � Independent Component Analysis of fMRI Data: Examining the Assumptions , 2022 .
[4] M. D’Esposito,et al. The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.
[5] Karl J. Friston,et al. Dynamic causal modelling , 2003, NeuroImage.
[6] S. Rombouts,et al. Hierarchical functional modularity in the resting‐state human brain , 2009, Human brain mapping.
[7] Pascal Vincent,et al. Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] Rob Fergus,et al. Visualizing and Understanding Convolutional Networks , 2013, ECCV.
[9] Vince D. Calhoun,et al. Deep learning for neuroimaging: a validation study , 2013, Front. Neurosci..
[10] Jürgen Schmidhuber,et al. Deep learning in neural networks: An overview , 2014, Neural Networks.
[11] Jieping Ye,et al. Holistic Atlases of Functional Networks and Interactions Reveal Reciprocal Organizational Architecture of Cortical Function , 2015, IEEE Transactions on Biomedical Engineering.
[12] Heng Huang,et al. Latent source mining in FMRI data via deep neural network , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).
[13] Dinggang Shen,et al. State-space model with deep learning for functional dynamics estimation in resting-state fMRI , 2016, NeuroImage.
[14] Ivo D. Dinov,et al. Deep learning for neural networks , 2018 .