Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability.

The development of more efficient and stable catalysts hasbeen an increasingly important goal for chemists andmaterials scientists for both economic and environmentalreasons. Much attention has been paid recently to nano-particlesoftransitionmetals,particularlynoblemetals,asaresult of significant progress in synthetic methods forcontrollingtheircomposition,size,andshape.Thisdevelop-ment should lead to the design of catalysts with superiorperformance that take advantage of nanoparticles highsurface-to-volume ratio and their shape-dependent surfacestructure.

[1]  Hyunjoon Song,et al.  A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p‐Nitrophenol , 2008 .

[2]  Yongxing Hu,et al.  Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. , 2008, Nano letters.

[3]  D. Zhao,et al.  Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. , 2008, Journal of the American Chemical Society.

[4]  T. Hyeon,et al.  A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation , 2007 .

[5]  T. Asefa,et al.  Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[6]  Zhen Ma,et al.  Rational design of gold catalysts with enhanced thermal stability: post modification of Au/TiO2 by amorphous SiO2 decoration , 2007 .

[7]  Yadong Yin,et al.  Superparamagnetic magnetite colloidal nanocrystal clusters. , 2007, Angewandte Chemie.

[8]  Yugang Sun,et al.  A self-templated approach to TiO2 microcapsules. , 2007, Nano letters.

[9]  Snigdhamayee Praharaj,et al.  Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process , 2007 .

[10]  S. Kuwabata,et al.  Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. , 2006, Angewandte Chemie.

[11]  A. Datye,et al.  Synthesis and reactivity of gold nanoparticles supported on transition metal doped mesoporous silica , 2006 .

[12]  W. Janusz,et al.  Successive interaction of pairs of soluble organics with nanosilica in aqueous media. , 2006, Journal of colloid and interface science.

[13]  A. Corma,et al.  Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts , 2006, Science.

[14]  Jung Ho Yu,et al.  Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. , 2006, Angewandte Chemie.

[15]  Andreas Hofmann,et al.  A general method for the controlled embedding of nanoparticles in silica colloids. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[16]  A. Corma,et al.  Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. , 2006, Angewandte Chemie.

[17]  Markus Drechsler,et al.  Thermosensitive Kern-Schale-Partikel als Träger für Ag-Nanopartikel : Steuerung der katalytischen Aktivität mithilfe des Phasenübergangs im Netzwerk , 2006 .

[18]  Yan Lu,et al.  Thermosensitive core-shell particles as carriers for ag nanoparticles: modulating the catalytic activity by a phase transition in networks. , 2006, Angewandte Chemie.

[19]  S. Dai,et al.  Nanoengineering catalyst supports via layer-by-layer surface functionalization , 2006 .

[20]  M. El-Sayed,et al.  Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. , 2005, The journal of physical chemistry. B.

[21]  G. Somorjai,et al.  High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. , 2005, The journal of physical chemistry. B.

[22]  Michele Rossi,et al.  The catalytic activity of "naked" gold particles. , 2004, Angewandte Chemie.

[23]  L. Liz‐Marzán,et al.  Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach , 2004 .

[24]  M. El-Sayed,et al.  Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. , 2004, Journal of the American Chemical Society.

[25]  H. Hah,et al.  New synthetic route for preparing rattle-type silica particles with metal cores. , 2004, Chemical communications.

[26]  M. Fox,et al.  Synthesis, Characterization, and Catalytic Applications of a Palladium-Nanoparticle-Cored Dendrimer , 2003 .

[27]  Christina Graf,et al.  A General Method To Coat Colloidal Particles with Silica , 2003 .

[28]  M. El-Sayed,et al.  Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. , 2003, Journal of the American Chemical Society.

[29]  A. P. Alivisatos,et al.  Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure , 2003 .

[30]  Jong‐Sung Yu,et al.  Fabrication of nanocapsules with Au particles trapped inside carbon and silica nanoporous shells. , 2003, Chemical communications.

[31]  T. Hyeon,et al.  Synthesis of Nanorattles Composed of Gold Nanoparticles Encapsulated in Mesoporous Carbon and Polymer Shells , 2002 .

[32]  Younan Xia,et al.  Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids , 2002 .

[33]  R. Crooks,et al.  Heck Heterocoupling within a Dendritic Nanoreactor , 2001 .

[34]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[35]  M. El-Sayed,et al.  Activation Energy of the Reaction between Hexacyanoferrate(III) and Thiosulfate Ions Catalyzed by Platinum Nanoparticles , 2000 .

[36]  J. Grunwaldt,et al.  Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation , 1999 .

[37]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[38]  G. Somorjai New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions , 1997 .

[39]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[40]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[41]  Albert P. Philipse,et al.  Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core , 1994 .

[42]  E. Matijević,et al.  Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite , 1992 .

[43]  G. J. Fleer,et al.  Adsorption of poly(vinyl pyrrolidone) on silica. II. The fraction of bound segments, measured by a variety of techniques , 1982 .