Non-uniform Gd distribution and magnetization profiles within GdCoFe alloy thin films

Rare earth (RE):transition metal (TM) ferrimagnetic alloys continue to attract significant attention for spintronics. This work focuses on the elemental distribution of RE and TM elements throughout the thickness of nominally uniform films and the resulting spatial variations of the magnetization within these layers. Samples of CoFe alloyed with Gd were studied using secondary ion mass spectroscopy, polarized neutron reflectometry, and x-ray resonant magnetic reflectivity. The samples were grown by magnetron co-sputtering to control the RE:TM alloy ratio of the ferrimagnetic layer, which was combined with W and Pt layers as either under or over-layers to create sample structures such as W/Gdx(Co70Fe30)100−x/Pt, where x = 0, 8, and 23 at. %. Results show that uniformly deposited thin-films have a significant variation in the distribution of the TM and RE through the film thickness, and this leads to a spatial distribution in the net magnetization profile and a non-uniform Gd magnetization profile within the layer. These findings have implications for the application RE:TM alloys in spintronics as they may impact the perpendicular magnetic anisotropy, the ferrimagnetic compensation temperature, and interfacial spin transport.

[1]  M. Weigand,et al.  Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys , 2022, Nature Materials.

[2]  Y. Choi,et al.  Magnetic damping in ferromagnetic/heavy-metal systems: The role of interfaces and the relation to proximity-induced magnetism , 2022, Physical Review B.

[3]  Hyunsoo Yang,et al.  Ferrimagnetic spintronics , 2021, Nature Materials.

[4]  P. Kuświk,et al.  Proximity-induced magnetism and the enhancement of damping in ferromagnetic/heavy metal systems , 2021, Applied Physics Letters.

[5]  D. Arena,et al.  Tunable competing magnetic anisotropies and spin reconfigurations in ferrimagnetic Fe100−xGdx alloy films , 2021, Physical Review B.

[6]  Juan Antonio González,et al.  Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers , 2021, Sensors.

[7]  D. Ralph,et al.  Maximizing Spin-Orbit Torque Generated by the Spin Hall Effect of Pt , 2021, 2106.04992.

[8]  S. Rozouvan,et al.  Surface structure of Gd20Co80 alloy , 2021, Semiconductor Physics, Quantum Electronics and Optoelectronics.

[9]  B. Hjörvarsson,et al.  Amorphous exchange-spring magnets with crossed perpendicular and in-plane anisotropies , 2021 .

[10]  A. Fert,et al.  Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient , 2021, Nature Communications.

[11]  T. Hase,et al.  Proximity-induced magnetism in Pt layered with rare-earth–transition-metal ferrimagnetic alloys , 2020, Physical Review Research.

[12]  H. Sepehri-Amin,et al.  Anisotropy-induced spin reorientation in chemically modulated amorphous ferrimagnetic films , 2020, 2007.03657.

[13]  D. Atkinson,et al.  The role of low Gd concentrations on magnetisation behaviour in rare earth:transition metal alloy films , 2020, Scientific Reports.

[14]  Luqiao Liu,et al.  Spintronics with compensated ferrimagnets , 2020 .

[15]  Zhe Yuan,et al.  Disorder Dependence of Interface Spin Memory Loss. , 2020, Physical review letters.

[16]  Laurence Bouchenoire,et al.  XMaS @ the ESRF , 2019, Philosophical Transactions of the Royal Society A.

[17]  T. Ono,et al.  Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets , 2019, Nature Electronics.

[18]  L. Bouchenoire,et al.  Threshold interface magnetization required to induce magnetic proximity effect , 2019, Physical Review B.

[19]  A. Gallant,et al.  Spin transport across the interface in ferromagnetic/nonmagnetic systems , 2019, Physical Review B.

[20]  D. Ralph,et al.  Spin-Orbit Torques in Heavy-Metal-Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling. , 2019, Physical review letters.

[21]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[22]  Arata Tsukamoto,et al.  Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet , 2018, Nature Nanotechnology.

[23]  C. Ross,et al.  Current-Induced Domain Wall Motion in a Compensated Ferrimagnet. , 2018, Physical review letters.

[24]  Diana Tsvetanova,et al.  SOT-MRAM 300MM Integration for Low Power and Ultrafast Embedded Memories , 2018, 2018 IEEE Symposium on VLSI Circuits.

[25]  Jonghyuk Kim,et al.  Spin-orbit torques associated with ferrimagnetic order in Pt/GdFeCo/MgO layers , 2018, Scientific Reports.

[26]  Kang L. Wang,et al.  Interfacial Dzyaloshinskii-Moriya Interaction: Effect of 5d Band Filling and Correlation with Spin Mixing Conductance. , 2017, Physical review letters.

[27]  K. Rajan,et al.  An informatics guided classification of miscible and immiscible binary alloy systems , 2017, Scientific Reports.

[28]  F. Sirotti,et al.  Correlation between structure, electronic properties, and magnetism in Co x Gd 1 -x thin amorphous films , 2017 .

[29]  G. Beach,et al.  Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film , 2017 .

[30]  F. Buttner,et al.  Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires , 2017, 1706.05987.

[31]  T. Hase,et al.  The interfacial nature of proximity-induced magnetism and the Dzyaloshinskii-Moriya interaction at the Pt/Co interface , 2017, Scientific Reports.

[32]  Hyunsoo Yang,et al.  Anomalous Current-Induced Spin Torques in Ferrimagnets near Compensation. , 2017, Physical review letters.

[33]  T. Ono,et al.  Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. , 2017, Nature materials.

[34]  S. Salahuddin,et al.  Spin-orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo , 2017, 1703.00146.

[35]  Luqiao Liu,et al.  Spin-Orbit Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys , 2016, 1610.09200.

[36]  D. Ralph,et al.  Interface-Induced Phenomena in Magnetism. , 2016, Reviews of modern physics.

[37]  M. Stiles,et al.  Spin Transport at Interfaces with Spin-orbit Coupling: Formalism , 2016, 1606.05758.

[38]  F. Hellman,et al.  Spin-Orbit Torques in ferrimagnetic GdFeCo Alloys , 2016, 1605.09498.

[39]  T. Silva,et al.  Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films , 2015, Nature Physics.

[40]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[41]  S. Yusuf,et al.  Two interface effects: Exchange bias and magnetic proximity , 2014 .

[42]  H. Jaffrès,et al.  Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. , 2013, Physical review letters.

[43]  W. E. Bailey,et al.  Effect of direct exchange on spin current scattering in Pd and Pt , 2013, 1308.0450.

[44]  Gabriella Andersson,et al.  GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution , 2007 .

[45]  J. Dahn,et al.  Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum , 2006 .

[46]  Arata Tsukamoto,et al.  Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation , 2006 .

[47]  R. Stroud,et al.  Determination of interface atomic structure and its impact on spin transport using Z-contrast microscopy and density-functional theory. , 2006, Physical review letters.

[48]  A. B. Pakhomov,et al.  A general approach to synthesis of nanoparticles with controlled morphologies and magnetic properties , 2005 .

[49]  P. Hansen,et al.  Magnetic and magneto‐optical properties of rare‐earth transition‐metal alloys containing Dy, Ho, Fe, Co , 1989 .

[50]  N. Imamura,et al.  Magneto-optical recording on amorphous films , 1985 .

[51]  H. Heitmann,et al.  AMORPHOUS RARE EARTH-TRANSITION METAL FILMS FOR MAGNETO-OPTICAL STORAGE , 1985 .

[52]  Mark H. Kryder,et al.  Magneto‐optic recording technology (invited) , 1985 .

[53]  D. Friedman,et al.  Theory of the magnetic proximity effect , 1985 .

[54]  T. Katayama,et al.  Preparation and some magnetic properties of amorphous rare earth-transition metal films with perpendicular anisotropy for bubble memory , 1981 .

[55]  Y. Mimura,et al.  Magnetic properties of amorphous alloy films of Fe with Gd, Tb, Dy, Ho, or Er , 1978 .

[56]  R. Taylor,et al.  Hall effect in amorphous thin‐film magnetic alloys , 1977 .

[57]  H. Leamy,et al.  The microstructure of amorphous rare-earth/transition-metal thin films , 1977 .

[58]  A. Gangulee,et al.  Magnetization and magnetic anisotropy in evaporated GdCo amorphous films , 1976 .

[59]  J. Suits,et al.  Structure and magnetic anisotropy of amorphous Gd-Co films , 1976 .

[60]  Y. Mimura,et al.  Hall effect in rare-earth--transition-metal amorphous alloy films , 1976 .

[61]  J. Ziegler,et al.  Effect of thermal annealing and ion radiation on the coercivity of amorphous Gd--Co films , 1974 .

[62]  R. Hasegawa Static bubble domain properties of amorphous Gd–Co films , 1974 .

[63]  J. Cohen,et al.  Long-range order and ordering kinetics in CoPt3 , 1972 .

[64]  R. K. Wangsness Sublattice Effects in Magnetic Resonance , 1953 .

[65]  D. Kyser,et al.  Effects of substrate bias and annealing on the properties of amorphous alloy films of Gd‐Co, Gd‐Fe, and Gd‐Co‐X (X=Mo,Cu,Au) , 1978 .

[66]  S. Esho,et al.  Growth Induced Anisotropy in Sputtered GdCo Films , 1976 .

[67]  Richard Joseph Gambino,et al.  Amorphous metallic films for bubble domain applications , 1973 .