Machine learning of accurate energy-conserving molecular force fields

The law of energy conservation is used to develop an efficient machine learning approach to construct accurate force fields. Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

[1]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[2]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[3]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[4]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[5]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[6]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[7]  H. J. Mclaughlin,et al.  Learn , 2002 .

[8]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[9]  Charles A. Micchelli,et al.  On Learning Vector-Valued Functions , 2005, Neural Computation.

[10]  C. Micchelli,et al.  Universal Multi-Task Kernels , 2008, J. Mach. Learn. Res..

[11]  J. Behler,et al.  Representing molecule-surface interactions with symmetry-adapted neural networks. , 2007, The Journal of chemical physics.

[12]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[13]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[14]  Charles A. Micchelli,et al.  Universal Multi-Task Kernels , 2008, J. Mach. Learn. Res..

[15]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[16]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[17]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[18]  T. Gneiting,et al.  Matérn Cross-Covariance Functions for Multivariate Random Fields , 2010 .

[19]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[20]  J. Behler Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. , 2011, Physical chemistry chemical physics : PCCP.

[21]  J. Behler,et al.  Construction of high-dimensional neural network potentials using environment-dependent atom pairs. , 2012, The Journal of chemical physics.

[22]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[23]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[24]  Klaus-Robert Müller,et al.  Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. , 2013, Journal of chemical theory and computation.

[25]  M. Rupp,et al.  Machine learning of molecular electronic properties in chemical compound space , 2013, 1305.7074.

[26]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[27]  Vikas Sindhwani,et al.  Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality , 2012, UAI.

[28]  Michele Ceriotti,et al.  i-PI: A Python interface for ab initio path integral molecular dynamics simulations , 2014, Comput. Phys. Commun..

[29]  K. Müller,et al.  Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space , 2015, The journal of physical chemistry letters.

[30]  Zhenwei Li,et al.  Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. , 2015, Physical review letters.

[31]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[32]  Rampi Ramprasad,et al.  Learning scheme to predict atomic forces and accelerate materials simulations , 2015, 1505.02701.

[33]  Klaus-Robert Müller,et al.  Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives , 2015 .

[34]  M. Rupp,et al.  Machine Learning for Quantum Mechanical Properties of Atoms in Molecules , 2015, 1505.00350.

[35]  Stéphane Mallat,et al.  Quantum Energy Regression using Scattering Transforms , 2015, ArXiv.

[36]  J. Behler Perspective: Machine learning potentials for atomistic simulations. , 2016, The Journal of chemical physics.

[37]  A. Tkatchenko,et al.  Modeling quantum nuclei with perturbed path integral molecular dynamics† †Electronic supplementary information (ESI) available: Heat capacity estimator and first and second-order cumulant expansions of the TI approach. See DOI: 10.1039/c5sc03443d , 2015, Chemical science.

[38]  Gábor Csányi,et al.  Comparing molecules and solids across structural and alchemical space. , 2015, Physical chemistry chemical physics : PCCP.

[39]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[40]  STAT , 2019, Springer Reference Medizin.

[41]  F. Lutscher Spatial Variation , 2019, Interdisciplinary Applied Mathematics.