Roughness in modules by using the notion of reference points

A module over a ring is a general mathematical concept for many examples of mathematical objects that can be added to each other and mul- tiplied by scalar numbers. In this paper, we consider a module over a ring as a universe and by using the notion of reference points, we provide local approximations for subsets of the universe.

[1]  Babushri Srinivas Kedukodi,et al.  Reference points and roughness , 2010, Inf. Sci..

[2]  Bijan Davvaz,et al.  Roughness in Cayley graphs , 2010, Inf. Sci..

[3]  Bijan Davvaz,et al.  Generalized lower and upper approximations in a ring , 2010, Inf. Sci..

[4]  Bijan Davvaz,et al.  Roughness in MV-algebras , 2010, Inf. Sci..

[5]  Babushri Srinivas Kedukodi,et al.  Equiprime, 3-prime and c-prime fuzzy ideals of nearrings , 2009, Soft Comput..

[6]  Bijan Davvaz,et al.  A short note on algebraic T , 2008, Inf. Sci..

[7]  Davide Ciucci,et al.  A Unifying Abstract Approach for Rough Models , 2008, RSKT.

[8]  Bijan Davvaz,et al.  Rough approximations in a general approximation space and their fundamental properties , 2008, Int. J. Gen. Syst..

[9]  Bijan Davvaz,et al.  The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets , 2008, Inf. Sci..

[10]  Degang Chen,et al.  Fuzzy rough set theory for the interval-valued fuzzy information systems , 2008, Inf. Sci..

[11]  Bijan Davvaz,et al.  On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings , 2008, Inf. Sci..

[12]  H. Torabi,et al.  Inclusiveness Measurement of Random Events Using Rough Set Theory , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  A. Parkash,et al.  Prime Submodules in Multiplication Modules , 2007 .

[14]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[15]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[16]  Bijan Davvaz,et al.  Roughness in modules , 2006, Inf. Sci..

[17]  Bijan Davvaz,et al.  Rough subpolygroups in a factor polygroup , 2006, J. Intell. Fuzzy Syst..

[18]  Bijan Davvaz,et al.  Roughness based on fuzzy ideals , 2006, Inf. Sci..

[19]  H. Torabi,et al.  Fuzzy random events in incomplete probability models , 2006, J. Intell. Fuzzy Syst..

[20]  U. Acar ON L-FUZZY PRIME SUBMODULES , 2005 .

[21]  Bijan Davvaz,et al.  Roughness in rings , 2004, Inf. Sci..

[22]  Wen-Xiu Zhang,et al.  The Lower and Upper Approximations of Fuzzy Sets in a Fuzzy Group , 2002, AFSS.

[23]  F. I. Sidky,et al.  On radicals of fuzzy submodules and primary fuzzy submodules , 2001, Fuzzy Sets Syst..

[24]  Nobuaki Kuroki,et al.  Rough Ideals in Semigroups , 1997, Inf. Sci..

[25]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[26]  G. Booth,et al.  SPECIAL RADICALS OF NEAR-RING MODULES , 1992 .

[27]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[28]  Siegfried Gottwald,et al.  Applications of fuzzy sets to systems analysis , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .