Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains

[1]  B. Garcia,et al.  Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. , 2014, Blood.

[2]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[3]  E. Lander,et al.  Development and Applications of CRISPR-Cas 9 for Genome Engineering , 2015 .

[4]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[5]  Jay Shendure,et al.  Saturation Editing of Genomic Regions by Multiplex Homology-Directed Repair , 2014, Nature.

[6]  Junwei Shi,et al.  The mechanisms behind the therapeutic activity of BET bromodomain inhibition. , 2014, Molecular cell.

[7]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[8]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[9]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[10]  J. Krosl,et al.  The methyltransferase G9a regulates HoxA9-dependent transcription in AML , 2014, Genes & development.

[11]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[12]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[13]  Ming Yu,et al.  Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation , 2013, Genes & development.

[14]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[15]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[16]  S. Orkin,et al.  Targeted Disruption of the EZH2/EED Complex Inhibits EZH2-dependent Cancer , 2013, Nature chemical biology.

[17]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[18]  R. Roeder,et al.  Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia , 2013, Proceedings of the National Academy of Sciences.

[19]  S. Lowe,et al.  The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia , 2013, Oncogene.

[20]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[21]  S. Orkin,et al.  Targeted Disruption of the EZH 2 / EED Complex Inhibits EZH 2-dependent Cancer , 2013 .

[22]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[23]  Crispin J. Miller,et al.  The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. , 2012, Cancer cell.

[24]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[25]  S. Robson,et al.  Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia , 2011, Nature.

[26]  P. Sandy,et al.  Targeting MYC dependence in cancer by inhibiting BET bromodomains , 2011, Proceedings of the National Academy of Sciences.

[27]  Yonghong Xiao,et al.  Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. , 2011, Cancer cell.

[28]  S. Lowe,et al.  Reversible suppression of an essential gene in adult mice using transgenic RNA interference , 2011, Proceedings of the National Academy of Sciences.

[29]  Christof Fellmann,et al.  Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi , 2011, Nature Biotechnology.

[30]  T. Kitamura,et al.  Plat-E: an efficient and stable system for transient packaging of retroviruses , 2000, Gene Therapy.