Edge-plasmon assisted electro-optical modulator

An efficient electro-optical modulation has been demonstrated here by using an edge plasmon mode specific for the hybrid plasmonic waveguide. Our approach addresses a major obstacle of the integrated microwave photonics caused by the polarization constraints of both active and passive components. In addition to sub-wavelength confinement, typical for surface plasmon polaritons, the edge plasmon modes enable exact matching of the polarization requirements for silicon based input/output grating couplers, waveguides and electro-optical modulators. A concept of the hybrid waveguide, implemented in a sandwich-like structure, implies a coupling of propagating plasmon modes with a waveguide mode. The vertically arranged sandwich includes a thin layer of epsilon-near-zero material (indium tin oxide) providing an efficient modulation at small length scales. Employed edge plasmons possess a mixed polarization state and can be excited with horizontally polarized waveguide modes. It allows the resulting modulator to work directly with efficient grating couplers and avoid using bulky and lossy polarization converters. A 3D optical model based on Maxwell equations combined with drift-diffusion semiconductor equations is developed. Numerically heavy computations involving the optimization of materials and geometry have been performed. Effective modes, stationary state field distribution, an extinction coefficient, optical losses and charge transport properties are computed and analyzed. In addition to the polarization matching, the advantages of the proposed model include the compact planar geometry of the silicon waveguide, reduced active electric resistance R and a relatively simple design, attractive for experimental realization.

[1]  Emmanouil E. Kriezis,et al.  Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model , 2017 .

[2]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[3]  I. Pshenichnyuk Static and dynamic properties of heavily doped quantum vortices , 2017, 1705.10068.

[4]  Rubab Amin,et al.  Waveguide-based electro-absorption modulator performance: comparative analysis. , 2018, Optics express.

[5]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[6]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[7]  J. Hauser,et al.  Electron and hole mobilities in silicon as a function of concentration and temperature , 1982, IEEE Transactions on Electron Devices.

[8]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[9]  L. Caspani,et al.  Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials. , 2016, Physical review letters.

[10]  N. Berloff,et al.  Inelastic scattering of xenon atoms by quantized vortices in superfluids , 2016, 1608.04157.

[11]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[12]  C. Kittel Introduction to solid state physics , 1954 .

[13]  R. Olmon,et al.  Optical dielectric function of gold , 2012 .

[14]  M. Thoss,et al.  Charge Transport in Pentacene-Graphene Nanojunctions. , 2012, The journal of physical chemistry letters.

[15]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[16]  J. Robertson High dielectric constant oxides , 2004 .

[17]  A. Helmy,et al.  Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics , 2015, Scientific Reports.

[18]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[19]  J. Dionne,et al.  Silicon-Based Plasmonics for On-Chip Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  Pavlos G. Lagoudakis,et al.  Realizing the classical XY Hamiltonian in polariton simulators. , 2016, Nature materials.

[21]  Wangshi Zhao,et al.  Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides , 2012, IEEE Photonics Journal.

[22]  Volker J. Sorger,et al.  Review and perspective on ultrafast wavelength‐size electro‐optic modulators , 2015 .

[23]  I. Pshenichnyuk Pair interactions of heavy vortices in quantum fluids , 2017, 1705.10072.

[24]  M. Al-Kuhaili Optical properties of hafnium oxide thin films and their application in energy-efficient windows , 2004 .

[25]  Timothy Chi Hin Liew,et al.  Exciton-polariton integrated circuits , 2010 .

[26]  Dawei Zhang,et al.  Electron-beam irradiation induced optical transmittance enhancement for Au/ITO and ITO/Au/ITO multilayer thin films , 2017 .

[27]  Fan Zhang,et al.  Indium Tin Oxide Based Dual-Polarization Electro-Optic Intensity Modulator on a Single Silicon Waveguide , 2018, Journal of Lightwave Technology.

[28]  Richard A. Soref,et al.  IR permittivities for silicides and doped silicon , 2010 .

[29]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[30]  Hiroshi Fukuda,et al.  Polarization rotator based on silicon wire waveguides. , 2008, Optics express.

[31]  Eli Yablonovitch,et al.  Inverse design of near unity efficiency perfectly vertical grating couplers. , 2017, Optics express.

[32]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[33]  B. Shen,et al.  Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. , 2017, Optics express.

[34]  I. Savenko,et al.  An exciton-polariton mediated all-optical router , 2013, 1307.6552.

[35]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[36]  C. Doerr,et al.  Compact polarization rotator on silicon for polarization-diversified circuits. , 2011, Optics letters.

[37]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[38]  L. Dominici,et al.  Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm. , 2009, Optics letters.

[39]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[40]  J. Aitchison,et al.  Theoretical Analysis of Hybrid Plasmonic Waveguide , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[42]  C. Leung,et al.  ITO/Au/ITO sandwich structure for near-infrared plasmonics. , 2014, ACS applied materials & interfaces.

[43]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[44]  A. Zayats,et al.  Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. , 2012, Physical review letters.

[45]  I. Pshenichnyuk,et al.  Motor effect in electron transport through a molecular junction with torsional vibrations , 2010, 1007.4826.

[46]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[47]  U. Koch,et al.  Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides , 2016, IEEE Photonics Journal.

[48]  Kristjan Leosson,et al.  Optical amplification of surface plasmon polaritons: review , 2012 .

[49]  Joachim Piprek,et al.  Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation , 2003 .

[50]  Umran S. Inan,et al.  Numerical Electromagnetics: The FDTD Method , 2011 .

[51]  J. Stewart Aitchison,et al.  A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes , 2014 .

[52]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[53]  Stephan W Koch,et al.  Exciton–polariton light–semiconductor coupling effects , 2011 .

[54]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[55]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .