Multi-directional optical coherence tomography for retinal imaging

We introduce multi-directional optical coherence tomography (OCT), a technique for investigation of the scattering properties of directionally reflective tissue samples. By combining the concepts of multi-channel and directional OCT, this approach enables simultaneous acquisition of multiple reflectivity depth-scans probing a mutual sample location from differing angular orientations. The application of multi-directional OCT in retinal imaging allows for in-depth investigations on the directional reflectivity of the retinal nerve fiber layer, Henle’s fiber layer and the photoreceptor layer. Major ophthalmic diseases (such as glaucoma or age-related macular degeneration) have been reported to alter the directional reflectivity properties of these retinal layers. Hence, the concept of multi-directional OCT might help to gain improved understanding of pathology development and progression. As a first step, we demonstrate the capabilities of multi-directional OCT in the eyes of healthy human volunteers.

[1]  Johannes F de Boer,et al.  RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment. , 2012, Investigative ophthalmology & visual science.

[2]  Marco Augustin,et al.  Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model , 2016, PloS one.

[3]  B. Bouma,et al.  Speckle reduction in optical coherence tomography by "path length encoded" angular compounding. , 2003, Journal of biomedical optics.

[4]  Xiang-Run Huang,et al.  Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas. , 2011, Investigative ophthalmology & visual science.

[5]  R W Knighton,et al.  The directional reflectance of the retinal nerve fiber layer of the toad. , 1992, Investigative ophthalmology & visual science.

[6]  Tomohiro Otani,et al.  IMPROVED VISUALIZATION OF HENLE FIBER LAYER BY CHANGING THE MEASUREMENT BEAM ANGLE ON OPTICAL COHERENCE TOMOGRAPHY , 2011, Retina.

[7]  Omer P. Kocaoglu,et al.  3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina , 2016, Investigative ophthalmology & visual science.

[8]  Victor X D Yang,et al.  Micromachined array tip for multifocus fiber-based optical coherence tomography. , 2004, Optics letters.

[9]  Gabriëlle H S Buitendijk,et al.  Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes. , 2015, Translational vision science & technology.

[10]  A. Laties,et al.  An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors. , 1971, Investigative ophthalmology.

[11]  Robert J Zawadzki,et al.  Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. , 2017, Biomedical optics express.

[12]  Christoph K. Hitzenberger,et al.  Multi-channel OCT enabling multi-directional in vivo imaging in the human retina , 2017 .

[13]  Masanori Hangai,et al.  Three-beam spectral-domain optical coherence tomography for retinal imaging , 2012, Journal of biomedical optics.

[14]  W. Stiles,et al.  Luminous Efficiency of Rays entering the Eye Pupil at Different Points , 1937, Nature.

[15]  G. Westheimer Dependence of the magnitude of the Stiles—Crawford effect on retinal location , 1967, The Journal of physiology.

[16]  Vadim Backman,et al.  Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer , 2003 .

[17]  Sina Farsiu,et al.  Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with spectral-domain optical coherence tomography. , 2009, Ophthalmology.

[18]  Theo Lasser,et al.  Dual beam heterodyne Fourier domain optical coherence tomography. , 2007, Optics express.

[19]  Bingqing Wang,et al.  Path-length-multiplexed scattering-angle-diverse optical coherence tomography for retinal imaging. , 2013, Optics letters.

[20]  Austin Roorda,et al.  Revealing Henle's fiber layer using spectral domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[21]  B. Lujan,et al.  DIRECTIONAL OPTICAL COHERENCE TOMOGRAPHY PROVIDES ACCURATE OUTER NUCLEAR LAYER AND HENLE FIBER LAYER MEASUREMENTS , 2015, Retina.

[22]  Johannes F de Boer,et al.  The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images. , 2012, Investigative ophthalmology & visual science.

[23]  Christoph K. Hitzenberger,et al.  Sequential multi-channel OCT in the retina using high-speed fiber optic switches , 2017, European Conference on Biomedical Optics.

[24]  Michael Pircher,et al.  Active-passive path-length encoded (APPLE) Doppler OCT. , 2016, Biomedical optics express.

[25]  Daniel X Hammer,et al.  Dual-beam Fourier domain optical Doppler tomography of zebrafish. , 2008, Optics express.

[26]  Christoph K. Hitzenberger,et al.  Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples , 2017, Biomedical optics express.

[27]  J M Schmitt,et al.  Array detection for speckle reduction in optical coherence microscopy , 1997, Physics in medicine and biology.

[28]  Shuichi Makita,et al.  Variable velocity range imaging of the choroid with dual-beam optical coherence angiography. , 2012, Optics express.

[29]  Leopold Schmetterer,et al.  Doppler Optical Coherence Tomography , 2014, Progress in Retinal and Eye Research.

[30]  Stuart K. Gardiner,et al.  Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma , 2016, Investigative ophthalmology & visual science.

[31]  R. Huber,et al.  Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT , 2013, Biomedical optics express.

[32]  Meng-Tsan Tsai,et al.  Noninvasive imaging of heart chamber in Drosophila with dual‐beam optical coherence tomography , 2013, Journal of biophotonics.

[33]  Omer P. Kocaoglu,et al.  The cellular origins of the outer retinal bands in optical coherence tomography images. , 2014, Investigative ophthalmology & visual science.

[34]  Sina Farsiu,et al.  Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology. , 2014, Biomedical optics express.

[35]  J. Fujimoto,et al.  Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. , 2004, Optics letters.

[36]  Christoph K. Hitzenberger,et al.  Few-mode fiber detection for tissue characterization in optical coherence tomography , 2017, European Conference on Biomedical Optics.

[37]  Brenton Keller,et al.  Pupil tracking optical coherence tomography for precise control of pupil entry position. , 2015, Biomedical optics express.

[38]  A. Elsner,et al.  Variations in photoreceptor directionally across the central retina. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  M. Pircher,et al.  Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution , 2014, Journal of modern optics.

[40]  F. Fankhauser,et al.  Receptor orientation in retinal pathology. A first study. , 1961, American journal of ophthalmology.

[41]  Christoph K. Hitzenberger,et al.  Total retinal blood flow and reproducibility evaluation by three beam optical Doppler tomography , 2016, SPIE BiOS.

[42]  Stacey S. Choi,et al.  Directionality of individual cone photoreceptors in the parafoveal region , 2015, Vision Research.

[43]  Austin Roorda,et al.  Chromatic visualization of reflectivity variance within hybridized directional OCT images , 2013, Photonics West - Biomedical Optics.

[44]  Leopold Schmetterer,et al.  Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. , 2008, Optics letters.

[45]  Barry Cense,et al.  Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography. , 2013, Biomedical optics express.

[46]  Hugh Barr,et al.  Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications , 2008, SPIE BiOS.

[47]  Donald T. Miller,et al.  Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. , 2008, Optics express.

[48]  B. Vakoc,et al.  Speckle Reduction in OCT using Massively-Parallel Detection and Frequency-Domain Ranging. , 2006, Optics express.

[49]  N. Munce,et al.  High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. , 2009, Optics letters.

[50]  W. Feuer,et al.  Retinal nerve fiber layer reflectometry must consider directional reflectance. , 2016, Biomedical optics express.

[51]  Shuichi Makita,et al.  Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. , 2011, Optics express.