IFSs consisting of generalized convex contractions

Abstract In this paper we introduce the concept of iterated function system consisting of generalized convex contractions. More precisely, given n ∈ ℕ*, an iterated function system consisting of generalized convex contractions on a complete metric space (X; d) is given by a finite family of continuous functions (fi)i ∈I , fi : X → X, having the property that for every ω ∈ λn(I) there exists a family of positive numbers (aω;υ)υ∈Vn(I) such that: x; y ∈ X. Here λn(I) represents the family of words with n letters from I, Vn(I) designates the family of words having at most n - 1 letters from I, while, if ω1 = ω1ω2 ... ωp, by fω we mean fω1 ⃘fω2 ⃘... ⃘ fωp. Denoting such a system by S = ((X; d); n; (fi)i∈I), one can consider the function FS : K(X) → K(X) described by , for all B ∈ K(X), where K(X) means the set of non-empty compact subsets of X. Our main result states that FS is a Picard operator for every iterated function system consisting of generalized convex contractions S.

[1]  A. Petruşel,et al.  Multivalued fractals and generalized multivalued contractions , 2008 .

[2]  Mihai Postolache,et al.  Approximate fixed points of generalized convex contractions , 2013 .

[3]  Radu Miculescu,et al.  Reich-type iterated function systems , 2016 .

[4]  N. Hussain,et al.  Discussions on Recent Results for --Contractive Mappings , 2014 .

[5]  Radu Miculescu,et al.  Generalized IFSs on Noncompact Spaces , 2010 .

[6]  Jan Andres,et al.  Multivalued Fractals and Hyperfractals , 2012, Int. J. Bifurc. Chaos.

[7]  Vasile I. Istraţescu,et al.  Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. — I , 1982 .

[8]  On the theory of fixed point theorems for convex contraction mappings , 2015 .

[9]  Ion Chitescu,et al.  Approximation of infinite dimensional fractals generated by integral equations , 2010, J. Comput. Appl. Math..

[10]  Jen-Chih Yao,et al.  Iterated function systems and well-posedness , 2009 .

[11]  A. Petruşel,et al.  Multivalued fractals in b-metric spaces , 2010 .

[12]  M. Barnsley,et al.  Chaos game for IFSs on topological spaces , 2014, 1410.3962.

[13]  Radu Miculescu,et al.  On a question of A. Kameyama concerning self-similar metrics , 2015 .

[14]  Naseer Shahzad,et al.  Some ordered fixed point results and the property (P) , 2012, Comput. Math. Appl..

[15]  A. Latif,et al.  APPROXIMATE FIXED POINT THEOREMS FOR PARTIAL GENERALIZED CONVEX CONTRACTION MAPPINGS IN $\alpha$-COMPLETE METRIC SPACES , 2015 .

[16]  J. Jachymski,et al.  IFS on a metric space with a graph structure and extensions of the Kelisky–Rivlin theorem , 2009 .

[17]  The Hutchinson-Barnsley theory for certain non-contraction mappings , 1993 .

[18]  A generalization of Istratescu's fixed point theorem for convex contractions , 2015, 1512.05490.

[19]  N. Secelean Generalized iterated function systems on the space l∞(X) , 2014 .

[20]  Naseer Shahzad,et al.  Fixed point theorems for convex contraction mappings on cone metric spaces , 2011, Math. Comput. Model..

[21]  F. Strobin Attractors of generalized IFSs that are not attractors of IFSs , 2015 .

[22]  M. Klimek,et al.  Generalized iterated function systems, multifunctions and Cantor sets , 2009 .

[23]  A Topological Version of Iterated Function Systems , 2012 .

[24]  Radu Miculescu,et al.  THE SHIFT SPACE FOR AN INFINITE ITERATED FUNCTION SYSTEM , 2009 .

[25]  Radu Miculescu Generalized Iterated Function Systems with Place Dependent Probabilities , 2014 .

[26]  F. Strobin,et al.  ON A CERTAIN GENERALISATION OF THE ITERATED FUNCTION SYSTEM , 2012, Bulletin of the Australian Mathematical Society.

[27]  Radu Miculescu,et al.  Applications of Fixed Point Theorems in the Theory of Generalized IFS , 2008 .

[28]  Krzysztof Leśniak Infinite Iterated Function Systems: A Multivalued Approach , 2004 .

[29]  Nicolae Adrian Secelean,et al.  Iterated function systems consisting of F-contractions , 2013, Fixed Point Theory and Applications.