IFSs consisting of generalized convex contractions
暂无分享,去创建一个
[1] A. Petruşel,et al. Multivalued fractals and generalized multivalued contractions , 2008 .
[2] Mihai Postolache,et al. Approximate fixed points of generalized convex contractions , 2013 .
[3] Radu Miculescu,et al. Reich-type iterated function systems , 2016 .
[4] N. Hussain,et al. Discussions on Recent Results for --Contractive Mappings , 2014 .
[5] Radu Miculescu,et al. Generalized IFSs on Noncompact Spaces , 2010 .
[6] Jan Andres,et al. Multivalued Fractals and Hyperfractals , 2012, Int. J. Bifurc. Chaos.
[7] Vasile I. Istraţescu,et al. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. — I , 1982 .
[8] On the theory of fixed point theorems for convex contraction mappings , 2015 .
[9] Ion Chitescu,et al. Approximation of infinite dimensional fractals generated by integral equations , 2010, J. Comput. Appl. Math..
[10] Jen-Chih Yao,et al. Iterated function systems and well-posedness , 2009 .
[11] A. Petruşel,et al. Multivalued fractals in b-metric spaces , 2010 .
[12] M. Barnsley,et al. Chaos game for IFSs on topological spaces , 2014, 1410.3962.
[13] Radu Miculescu,et al. On a question of A. Kameyama concerning self-similar metrics , 2015 .
[14] Naseer Shahzad,et al. Some ordered fixed point results and the property (P) , 2012, Comput. Math. Appl..
[15] A. Latif,et al. APPROXIMATE FIXED POINT THEOREMS FOR PARTIAL GENERALIZED CONVEX CONTRACTION MAPPINGS IN $\alpha$-COMPLETE METRIC SPACES , 2015 .
[16] J. Jachymski,et al. IFS on a metric space with a graph structure and extensions of the Kelisky–Rivlin theorem , 2009 .
[17] The Hutchinson-Barnsley theory for certain non-contraction mappings , 1993 .
[18] A generalization of Istratescu's fixed point theorem for convex contractions , 2015, 1512.05490.
[19] N. Secelean. Generalized iterated function systems on the space l∞(X) , 2014 .
[20] Naseer Shahzad,et al. Fixed point theorems for convex contraction mappings on cone metric spaces , 2011, Math. Comput. Model..
[21] F. Strobin. Attractors of generalized IFSs that are not attractors of IFSs , 2015 .
[22] M. Klimek,et al. Generalized iterated function systems, multifunctions and Cantor sets , 2009 .
[23] A Topological Version of Iterated Function Systems , 2012 .
[24] Radu Miculescu,et al. THE SHIFT SPACE FOR AN INFINITE ITERATED FUNCTION SYSTEM , 2009 .
[25] Radu Miculescu. Generalized Iterated Function Systems with Place Dependent Probabilities , 2014 .
[26] F. Strobin,et al. ON A CERTAIN GENERALISATION OF THE ITERATED FUNCTION SYSTEM , 2012, Bulletin of the Australian Mathematical Society.
[27] Radu Miculescu,et al. Applications of Fixed Point Theorems in the Theory of Generalized IFS , 2008 .
[28] Krzysztof Leśniak. Infinite Iterated Function Systems: A Multivalued Approach , 2004 .
[29] Nicolae Adrian Secelean,et al. Iterated function systems consisting of F-contractions , 2013, Fixed Point Theory and Applications.