Spatial Data Quality in the Internet of Things: Management, Exploitation, and Prospects

With the continued deployment of the Internet of Things (IoT), increasing volumes of devices are being deployed that emit massive spatially referenced data. Due in part to the dynamic, decentralized, and heterogeneous architecture of the IoT, the varying and often low quality of spatial IoT data (SID) presents challenges to applications built on top of this data. This survey aims to provide unique insight to practitioners who intend to develop IoT-enabled applications and to researchers who wish to conduct research that relates to data quality in the IoT setting. The survey offers an inventory analysis of major data quality dimensions in SID and covers significant data characteristics and associated quality considerations. The survey summarizes data quality related technologies from both task and technique perspectives. Organizing the technologies from the task perspective, it covers recent progress in SID quality management, encompassing location refinement, uncertainty elimination, outlier removal, fault correction, data integration, and data reduction; and it covers low-quality SID exploitation, encompassing querying, analysis, and decision-making techniques. Finally, the survey covers emerging trends and open issues concerning the quality of SID.

[1]  K. Tan,et al.  Continuous Trajectory Similarity Search for Online Outlier Detection , 2022, IEEE Transactions on Knowledge and Data Engineering.

[2]  Xuemin Lin,et al.  Continuous monitoring of moving skyline and top-k queries , 2021, The VLDB Journal.

[3]  Tianyu Wo,et al.  Error Bounded Line Simplification Algorithms for Trajectory Compression: An Experimental Evaluation , 2021, ACM Trans. Database Syst..

[4]  Tao Lin,et al.  Estimating Traffic Flow in Large Road Networks Based on Multi-Source Traffic Data , 2021, IEEE Transactions on Intelligent Transportation Systems.

[5]  Nalini Venkatasubramanian,et al.  SmartParcels: Cross-Layer IoT Planning for Smart Communities , 2021, IoTDI.

[6]  Songtao Guo,et al.  ToiletBuilder: A PU-Learning-Based Model for Selecting New Public Toilet Locations , 2021, IEEE Internet of Things Journal.

[7]  Cheng Long,et al.  Trajectory Simplification with Reinforcement Learning , 2021, 2021 IEEE 37th International Conference on Data Engineering (ICDE).

[8]  Torben Bach Pedersen,et al.  TRACE: Real-time Compression of Streaming Trajectories in Road Networks , 2021, Proc. VLDB Endow..

[9]  Yang Yan,et al.  Deep Reinforcement Learning for Task Assignment in Spatial Crowdsourcing and Sensing , 2021, IEEE Sensors Journal.

[10]  Aoying Zhou,et al.  Feature Grouping–based Trajectory Outlier Detection over Distributed Streams , 2021, ACM Trans. Intell. Syst. Technol..

[11]  Anliang Li,et al.  Predicting Human Mobility with Federated Learning , 2020, SIGSPATIAL/GIS.

[12]  Zhetao Li,et al.  Location Recommendation for Enterprises by Multi-Source Urban Big Data Analysis , 2020, IEEE Transactions on Services Computing.

[13]  Shaoxu Song,et al.  IoT Data Quality , 2020, CIKM.

[14]  Xiaofang Zhou,et al.  Trajectory-Based Spatiotemporal Entity Linking , 2020, IEEE Transactions on Knowledge and Data Engineering.

[15]  Zhifeng Bao,et al.  A Data-Driven Approach for GPS Trajectory Data Cleaning , 2020, DASFAA.

[16]  Andreas Zuefle,et al.  Uncertain Spatial Data Management: An Overview , 2020, Handbook of Big Geospatial Data.

[17]  Xinyan Zhu,et al.  Detection of Indoor High-Density Crowds via Wi-Fi Tracking Data , 2020, Sensors.

[18]  Nwamaka U. Okafor,et al.  Improving Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach , 2020, ICT Express.

[19]  Wei Chen,et al.  TrajVAE: A Variational AutoEncoder model for trajectory generation , 2020, Neurocomputing.

[20]  Paolo Bellavista,et al.  Big Spatial Data Management for the Internet of Things: A Survey , 2020, Journal of Network and Systems Management.

[21]  Noorbakhsh Amiri Golilarz,et al.  Blockchain-Federated-Learning and Deep Learning Models for COVID-19 Detection Using CT Imaging , 2020, IEEE Sensors Journal.

[22]  Muhammad Aamir Cheema,et al.  Continuously monitoring alternative shortest paths on road networks , 2020, Proc. VLDB Endow..

[23]  Feng Xia,et al.  Vehicle Trajectory Clustering Based on Dynamic Representation Learning of Internet of Vehicles , 2020, IEEE Transactions on Intelligent Transportation Systems.

[24]  Zhu Wang,et al.  TrajCompressor: An Online Map-matching-based Trajectory Compression Framework Leveraging Vehicle Heading Direction and Change , 2020, IEEE Transactions on Intelligent Transportation Systems.

[25]  You Li,et al.  Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation , 2020, ArXiv.

[26]  Felix Klanner,et al.  Modeling hierarchical category transition for next POI recommendation with uncertain check-ins , 2020, Inf. Sci..

[27]  Zhifeng Bao,et al.  Online Anomalous Trajectory Detection with Deep Generative Sequence Modeling , 2020, 2020 IEEE 36th International Conference on Data Engineering (ICDE).

[28]  Lidan Shou,et al.  Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks , 2020, 2020 IEEE 36th International Conference on Data Engineering (ICDE).

[29]  James J. Q. Yu,et al.  Privacy-Preserving Traffic Flow Prediction: A Federated Learning Approach , 2020, IEEE Internet of Things Journal.

[30]  Torben Bach Pedersen,et al.  Compression of uncertain trajectories in road networks , 2020, Proc. VLDB Endow..

[31]  L. Benini,et al.  InfiniWolf: Energy Efficient Smart Bracelet for Edge Computing with Dual Source Energy Harvesting , 2020, Design, Automation and Test in Europe.

[32]  Jose A. Lozano,et al.  A Review on Outlier/Anomaly Detection in Time Series Data , 2020, ACM Comput. Surv..

[33]  Lidan Shou,et al.  Toward Translating Raw Indoor Positioning Data into Mobility Semantics , 2020, Trans. Data Sci..

[34]  Jia Liu,et al.  Urban big data fusion based on deep learning: An overview , 2020, Inf. Fusion.

[35]  Jennifer Leopold,et al.  Collective Representation Learning on Spatiotemporal Heterogeneous Information Networks , 2019, SIGSPATIAL/GIS.

[36]  Suhang Wang,et al.  Unsupervised Representation Learning of Spatial Data via Multimodal Embedding , 2019, CIKM.

[37]  Qingquan Li,et al.  Functional urban land use recognition integrating multi-source geospatial data and cross-correlations , 2019, Comput. Environ. Urban Syst..

[38]  Gang Chen,et al.  Finding Most Popular Indoor Semantic Locations Using Uncertain Mobility Data , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[39]  Riccardo Melen,et al.  IoT Data Validation Using Spatial and Temporal Correlations , 2019, MTSR.

[40]  Adam Scholefield,et al.  Multi-Modal Probabilistic Indoor Localization on a Smartphone , 2019, 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[41]  Zhe Jiang,et al.  A Survey on Spatial Prediction Methods , 2019, IEEE Transactions on Knowledge and Data Engineering.

[42]  Chunhua Su,et al.  Secure and Efficient ${K}$ Nearest Neighbor Query Over Encrypted Uncertain Data in Cloud-IoT Ecosystem , 2019, IEEE Internet of Things Journal.

[43]  Susan P. Williams,et al.  Data quality and the Internet of Things , 2019, Computing.

[44]  Fuzhen Zhuang,et al.  Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation , 2019, AAAI.

[45]  Xiaolong Xu,et al.  Privacy-preserving and sparsity-aware location-based prediction method for collaborative recommender systems , 2019, Future Gener. Comput. Syst..

[46]  Hongming Cai,et al.  A short-term energy prediction system based on edge computing for smart city , 2019, Future Gener. Comput. Syst..

[47]  Xiang Lian,et al.  Probabilistic Maximum Range-Sum Queries on Spatial Database , 2019, SIGSPATIAL/GIS.

[48]  Haibing Chen,et al.  Wireless Indoor Localization Using Convolutional Neural Network and Gaussian Process Regression , 2019, Sensors.

[49]  Karsten M. Borgwardt,et al.  Representation Learning for Dynamic Graphs: A Survey , 2019, J. Mach. Learn. Res..

[50]  Kai Zheng,et al.  Collective spatial keyword search on activity trajectories , 2019, GeoInformatica.

[51]  Guoliang Li,et al.  Distributed In-memory Trajectory Similarity Search and Join on Road Network , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[52]  Zheng Zheng,et al.  CurrentClean: Spatio-Temporal Cleaning of Stale Data , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[53]  Xiaodai Dong,et al.  Recurrent Neural Networks for Accurate RSSI Indoor Localization , 2019, IEEE Internet of Things Journal.

[54]  Peng Dai,et al.  Combination of DNN and Improved KNN for Indoor Location Fingerprinting , 2019, Wirel. Commun. Mob. Comput..

[55]  Mamta Agiwal,et al.  Towards Connected Living: 5G Enabled Internet of Things (IoT) , 2019 .

[56]  Xianfeng Tang,et al.  Joint Modeling of Dense and Incomplete Trajectories for Citywide Traffic Volume Inference , 2019, WWW.

[57]  Fan Zhang,et al.  National-scale Traffic Model Calibration in Real Time with Multi-source Incomplete Data , 2019, ACM Trans. Cyber Phys. Syst..

[58]  Xianfeng Tang,et al.  Learning from Multiple Cities: A Meta-Learning Approach for Spatial-Temporal Prediction , 2019, WWW.

[59]  Bo Li,et al.  A multi-dimensional extension of the Lightweight Temporal Compression method , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[60]  Zhou Yang,et al.  Spatial-temporal Multi-Task Learning for Within-field Cotton Yield Prediction , 2018, PAKDD.

[61]  Juan M. Corchado,et al.  Blockchain framework for IoT data quality via edge computing , 2018, BlockSys@SenSys.

[62]  Andrey V. Savkin,et al.  Towards the Internet of Flying Robots: A Survey , 2018, Sensors.

[63]  Daniele Fontanelli,et al.  Bluetooth-Based Indoor Positioning Through ToF and RSSI Data Fusion , 2018, 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[64]  Xinghuo Yu,et al.  Gaussian Approximation-Based Lossless Compression of Smart Meter Readings , 2018, IEEE Transactions on Smart Grid.

[65]  Mario Piattini,et al.  Data Quality Best Practices in IoT Environments , 2018, 2018 11th International Conference on the Quality of Information and Communications Technology (QUATIC).

[66]  Haoyi Xiong,et al.  Multi-Task Allocation in Mobile Crowd Sensing with Individual Task Quality Assurance , 2018, IEEE Transactions on Mobile Computing.

[67]  Gang Chen,et al.  In Search of Indoor Dense Regions: An Approach Using Indoor Positioning Data , 2018, IEEE Transactions on Knowledge and Data Engineering.

[68]  Yan Zhao,et al.  REST: A Reference-based Framework for Spatio-temporal Trajectory Compression , 2018, KDD.

[69]  Thanassis Tiropanis,et al.  Analytics for the Internet of Things , 2018, ACM Comput. Surv..

[70]  Arnab Kumar Laha,et al.  Real time location prediction with taxi-GPS data streams , 2018, Transportation Research Part C: Emerging Technologies.

[71]  Jianxin Li,et al.  Road Traffic Speed Prediction: A Probabilistic Model Fusing Multi-Source Data , 2018, IEEE Transactions on Knowledge and Data Engineering.

[72]  Youakim Badr,et al.  Internet of Medical Things: A Review of Recent Contributions Dealing With Cyber-Physical Systems in Medicine , 2018, IEEE Internet of Things Journal.

[73]  Ralf Tönjes,et al.  Valid.IoT: a framework for sensor data quality analysis and interpolation , 2018, MMSys.

[74]  Gengfa Fang,et al.  An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture , 2018, Sensors.

[75]  Kotagiri Ramamohanarao,et al.  Continuous Spatial Query Processing , 2018, ACM Comput. Surv..

[76]  Xiaofang Zhou,et al.  A System for Spatial-Temporal Trajectory Data Integration and Representation , 2018, DASFAA.

[77]  J. Murphy The General Data Protection Regulation (GDPR) , 2018, Irish medical journal.

[78]  Jian Chen,et al.  An INS/WiFi Indoor Localization System Based on the Weighted Least Squares , 2018, Sensors.

[79]  Liang Zhao,et al.  Incomplete Label Multi-Task Ordinal Regression for Spatial Event Scale Forecasting , 2018, AAAI.

[80]  Meihui Zhang,et al.  Continuous Proximity Detection via Predictive Safe Region Construction , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[81]  Pradeep K. Atrey,et al.  GeoSClean: Secure Cleaning of GPS Trajectory Data Using Anomaly Detection , 2018, 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR).

[82]  Christian S. Jensen,et al.  Learning to Route with Sparse Trajectory Sets , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[83]  Ricard Vilalta,et al.  Integration of IoT, Transport SDN, and Edge/Cloud Computing for Dynamic Distribution of IoT Analytics and Efficient Use of Network Resources , 2018, Journal of Lightwave Technology.

[84]  Chengfei Liu,et al.  A Novel Representation and Compression for Queries on Trajectories in Road Networks , 2018, IEEE Transactions on Knowledge and Data Engineering.

[85]  Xiaolin Zhu,et al.  Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions , 2018, Remote. Sens..

[86]  Lijun Chen,et al.  Optimal weighted K-nearest neighbour algorithm for wireless sensor network fingerprint localisation in noisy environment , 2018, IET Commun..

[87]  Yunjun Gao,et al.  UlTraMan: A Unified Platform for Big Trajectory Data Management and Analytics , 2018, Proc. VLDB Endow..

[88]  Hervé Martin,et al.  FrameSTEP: A framework for annotating semantic trajectories based on episodes , 2018, Expert Syst. Appl..

[89]  Wenfeng Zhao,et al.  On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices , 2018, IEEE Transactions on Biomedical Circuits and Systems.

[90]  Erdogan Dogdu,et al.  Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey , 2018, IEEE Internet of Things Journal.

[91]  Swades De,et al.  An Efficient Data Characterization and Reduction Scheme for Smart Metering Infrastructure , 2018, IEEE Transactions on Industrial Informatics.

[92]  Albert Y. Zomaya,et al.  Location of Things (LoT): A Review and Taxonomy of Sensors Localization in IoT Infrastructure , 2018, IEEE Communications Surveys & Tutorials.

[93]  Chunming Hu,et al.  One-pass trajectory simplification using the synchronous Euclidean distance , 2018, The VLDB Journal.

[94]  Mohsen Guizani,et al.  Deep Learning for IoT Big Data and Streaming Analytics: A Survey , 2017, IEEE Communications Surveys & Tutorials.

[95]  Ibrahim Kamel,et al.  Dynamic spatial index for efficient query processing on the cloud , 2017, Journal of Cloud Computing.

[96]  José Luis Ambite,et al.  Mining Public Datasets for Modeling Intra-City PM2.5 Concentrations at a Fine Spatial Resolution , 2017, SIGSPATIAL/GIS.

[97]  Weiwei Sun,et al.  A Fast Trajectory Outlier Detection Approach via Driving Behavior Modeling , 2017, CIKM.

[98]  Jiayu Zhou,et al.  Multi-level Multi-task Learning for Modeling Cross-Scale Interactions in Nested Geospatial Data , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[99]  Xiao Chen,et al.  Improved Wi-Fi Indoor Positioning Based on Particle Swarm Optimization , 2017, IEEE Sensors Journal.

[100]  Amit P. Sheth,et al.  Machine learning for Internet of Things data analysis: A survey , 2017, Digit. Commun. Networks.

[101]  Tao Guo,et al.  SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects , 2017, IEEE Transactions on Knowledge and Data Engineering.

[102]  Wei-Shinn Ku,et al.  Toward Mining Stop-by Behaviors in Indoor Space , 2017, ACM Trans. Spatial Algorithms Syst..

[103]  Zhenhui Li,et al.  Contextual Spatial Outlier Detection with Metric Learning , 2017, KDD.

[104]  Feifei Li,et al.  Distributed Trajectory Similarity Search , 2017, Proc. VLDB Endow..

[105]  Mohsen Guizani,et al.  Internet of Things Architecture: Recent Advances, Taxonomy, Requirements, and Open Challenges , 2017, IEEE Wireless Communications.

[106]  Yongyang Xu,et al.  Quality assessment of building footprint data using a deep autoencoder network , 2017, Int. J. Geogr. Inf. Sci..

[107]  Yoshiharu Ishikawa,et al.  CiNCT: Compression and Retrieval for Massive Vehicular Trajectories via Relative Movement Labeling , 2017, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[108]  Philip S. Yu,et al.  Time Series Data Cleaning: From Anomaly Detection to Anomaly Repairing , 2017, Proc. VLDB Endow..

[109]  Weiwei Sun,et al.  COMPRESS , 2017, ACM Trans. Database Syst..

[110]  Rashid Mehmood,et al.  Data Fusion and IoT for Smart Ubiquitous Environments: A Survey , 2017, IEEE Access.

[111]  Dieter Pfoser,et al.  Handling Uncertainty in Geo-Spatial Data , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[112]  Elena Simona Lohan,et al.  Robustness, Security and Privacy in Location-Based Services for Future IoT: A Survey , 2017, IEEE Access.

[113]  Wei Zhou,et al.  A Real-Time Similarity Measure Model for Multi-source Trajectories , 2017, 2017 International Conference on Computing Intelligence and Information System (CIIS).

[114]  Siyuan Liu,et al.  Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling , 2017, IEEE Transactions on Knowledge and Data Engineering.

[115]  Amit P. Sheth,et al.  IoT Quality Control for Data and Application Needs , 2017, IEEE Intelligent Systems.

[116]  Zdenek Becvar,et al.  Mobile Edge Computing: A Survey on Architecture and Computation Offloading , 2017, IEEE Communications Surveys & Tutorials.

[117]  Lianfeng Shen,et al.  RSS-Based Localization in WSNs Using Gaussian Mixture Model via Semidefinite Relaxation , 2017, IEEE Communications Letters.

[118]  Zhenyu Wu,et al.  Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System , 2017, Sensors.

[119]  Fangli Ying,et al.  Research of mining algorithms for uncertain spatio-temporal co-occurrence pattern , 2017, 2017 9th International Conference on Knowledge and Smart Technology (KST).

[120]  Xiaofang Zhou,et al.  Leveraging multi-aspect time-related influence in location recommendation , 2017, World Wide Web.

[121]  Gao Cong,et al.  Distributed Publish/Subscribe Query Processing on the Spatio-Textual Data Stream , 2016, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[122]  Liangpei Zhang,et al.  A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[123]  Filippo Furfaro,et al.  Exploiting Integrity Constraints for Cleaning Trajectories of RFID-Monitored Objects , 2016, ACM Trans. Database Syst..

[124]  Leonidas J. Guibas,et al.  Knowledge-based trajectory completion from sparse GPS samples , 2016, SIGSPATIAL/GIS.

[125]  Fei Wu,et al.  Where Did You Go: Personalized Annotation of Mobility Records , 2016, CIKM.

[126]  Emiliano De Cristofaro,et al.  Privacy-friendly mobility analytics using aggregate location data , 2016, SIGSPATIAL/GIS.

[127]  Ling Chen,et al.  Spatially fine-grained urban air quality estimation using ensemble semi-supervised learning and pruning , 2016, UbiComp.

[128]  Hajar Mousannif,et al.  Data quality in internet of things: A state-of-the-art survey , 2016, J. Netw. Comput. Appl..

[129]  Weiwei Sun,et al.  Probabilistic Robust Route Recovery with Spatio-Temporal Dynamics , 2016, KDD.

[130]  Jing He,et al.  Spatiotemporal Interpolation for Environmental Modelling , 2016, Sensors.

[131]  Hua Lu,et al.  Learning-Based Cleansing for Indoor RFID Data , 2016, SIGMOD Conference.

[132]  Jianmin Wang,et al.  Sequential Data Cleaning: A Statistical Approach , 2016, SIGMOD Conference.

[133]  Awais Ahmad,et al.  Urban planning and building smart cities based on the Internet of Things using Big Data analytics , 2016, Comput. Networks.

[134]  Jianmin Wang,et al.  Cleaning timestamps with temporal constraints , 2016, The VLDB Journal.

[135]  Rashid Rashidzadeh,et al.  Improved particle filter based on WLAN RSSI fingerprinting and smart sensors for indoor localization , 2016, Comput. Commun..

[136]  Siyuan Liu,et al.  Reinforcement Learning Framework for Modeling Spatial Sequential Decisions under Uncertainty: (Extended Abstract) , 2016, AAMAS.

[137]  Jukka Riekki,et al.  Semantic Reasoning for Context-Aware Internet of Things Applications , 2016, IEEE Internet of Things Journal.

[138]  Liu Liu,et al.  Towards fusing uncertain location data from heterogeneous sources , 2016, GeoInformatica.

[139]  Liansheng Tan,et al.  Data Reduction in Wireless Sensor Networks: A Hierarchical LMS Prediction Approach , 2016, IEEE Sensors Journal.

[140]  Joseph Euzebe Tate,et al.  Preprocessing and Golomb–Rice Encoding for Lossless Compression of Phasor Angle Data , 2016, IEEE Transactions on Smart Grid.

[141]  Gerhard P. Hancke,et al.  A Survey on Urban Traffic Management System Using Wireless Sensor Networks , 2016, Sensors.

[142]  Qingquan Li,et al.  Lane-Level Road Information Mining from Vehicle GPS Trajectories Based on Naïve Bayesian Classification , 2015, ISPRS Int. J. Geo Inf..

[143]  Bin Jiang,et al.  Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges , 2015, ArXiv.

[144]  Fan Zhang,et al.  coMobile: real-time human mobility modeling at urban scale using multi-view learning , 2015, SIGSPATIAL/GIS.

[145]  Jiawei Han,et al.  Assembler: Efficient Discovery of Spatial Co-evolving Patterns in Massive Geo-sensory Data , 2015, KDD.

[146]  Quanzhong Li,et al.  An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks , 2015, Sensors.

[147]  Quan Z. Sheng,et al.  A Cloud-Friendly RFID Trajectory Clustering Algorithm in Uncertain Environments , 2015, IEEE Transactions on Parallel and Distributed Systems.

[148]  Walid G. Aref,et al.  Tornado: A Distributed Spatio-Textual Stream Processing System , 2015, Proc. VLDB Endow..

[149]  Nianxue Luo,et al.  Parallel clustering of big data of spatio-temporal trajectory , 2015, 2015 11th International Conference on Natural Computation (ICNC).

[150]  Christof Fetzer,et al.  Quality-Driven Continuous Query Execution over Out-of-Order Data Streams , 2015, SIGMOD Conference.

[151]  Kian-Lee Tan,et al.  Location-Aware Pub/Sub System: When Continuous Moving Queries Meet Dynamic Event Streams , 2015, SIGMOD Conference.

[152]  Wang-Chien Lee,et al.  Semantic Annotation of Mobility Data using Social Media , 2015, WWW.

[153]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[154]  Le Gruenwald,et al.  Large-scale spatial join query processing in Cloud , 2015, 2015 31st IEEE International Conference on Data Engineering Workshops.

[155]  Wilfred Ng,et al.  Probabilistic Convex Hull Queries over Uncertain Data , 2015, IEEE Transactions on Knowledge and Data Engineering.

[156]  Jae-Gil Lee,et al.  A Novel Framework for Online Amnesic Trajectory Compression in Resource-Constrained Environments , 2015, IEEE Transactions on Knowledge and Data Engineering.

[157]  Hua Lu,et al.  Distance-Aware Join for Indoor Moving Objects , 2015, IEEE Transactions on Knowledge and Data Engineering.

[158]  Wang-Chien Lee,et al.  Indexing spatial data in cloud data managements , 2014, Pervasive Mob. Comput..

[159]  Jiajun Liu,et al.  Bounded Quadrant System: Error-bounded trajectory compression on the go , 2014, 2015 IEEE 31st International Conference on Data Engineering.

[160]  Thambipillai Srikanthan,et al.  Robust real-time route inference from sparse vehicle position data , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[161]  Fusheng Wang,et al.  SATO: a spatial data partitioning framework for scalable query processing , 2014, SIGSPATIAL/GIS.

[162]  Mani B. Srivastava,et al.  Truth Discovery in Crowdsourced Detection of Spatial Events , 2014, IEEE Transactions on Knowledge and Data Engineering.

[163]  Kian-Lee Tan,et al.  CANDS: Continuous Optimal Navigation via Distributed Stream Processing , 2014, Proc. VLDB Endow..

[164]  Wang Yi,et al.  Processing Moving kNN Queries Using Influential Neighbor Sets , 2014, Proc. VLDB Endow..

[165]  Fan Zhang,et al.  Exploring human mobility with multi-source data at extremely large metropolitan scales , 2014, MobiCom.

[166]  Cheng Long,et al.  Trajectory Simplification: On Minimizing the Direction-based Error , 2014, Proc. VLDB Endow..

[167]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[168]  Hua Lu,et al.  Managing Evolving Uncertainty in Trajectory Databases , 2014, IEEE Transactions on Knowledge and Data Engineering.

[169]  Hua Lu,et al.  Handling False Negatives in Indoor RFID Data , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[170]  S. S. Ravi,et al.  Compression of trajectory data: a comprehensive evaluation and new approach , 2014, GeoInformatica.

[171]  Hans-Peter Kriegel,et al.  Managing uncertainty in spatial and spatio-temporal data , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[172]  Hsiao-Ping Tsai,et al.  Mining Uncertain Sequence Data on Hadoop Platform , 2014, PAKDD Workshops.

[173]  Hans-Peter Kriegel,et al.  Reverse-Nearest Neighbor Queries on Uncertain Moving Object Trajectories , 2014, DASFAA.

[174]  Christian Esposito,et al.  Calibrating Indoor Positioning Systems with Low Efforts , 2014, IEEE Transactions on Mobile Computing.

[175]  David Taniar,et al.  Monitoring Moving Queries inside a Safe Region , 2014, TheScientificWorldJournal.

[176]  Laurence T. Yang,et al.  Data Mining for Internet of Things: A Survey , 2014, IEEE Communications Surveys & Tutorials.

[177]  James Bailey,et al.  Mining Probabilistic Frequent Spatio-Temporal Sequential Patterns with Gap Constraints from Uncertain Databases , 2013, 2013 IEEE 13th International Conference on Data Mining.

[178]  Ryan Johnson,et al.  A parallel spatial data analysis infrastructure for the cloud , 2013, SIGSPATIAL/GIS.

[179]  Rong Zheng,et al.  Efficient algorithms for spatial skyline query with uncertainty , 2013, SIGSPATIAL/GIS.

[180]  Michael F. Goodchild,et al.  The quality of big (geo)data , 2013 .

[181]  Gang Chen,et al.  KSQ: Top-k Similarity Query on Uncertain Trajectories , 2013, IEEE Transactions on Knowledge and Data Engineering.

[182]  Chonggang Wang,et al.  A Linked-Data Model for Semantic Sensor Streams , 2013, 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.

[183]  Kai Zheng,et al.  Calibrating trajectory data for similarity-based analysis , 2013, SIGMOD '13.

[184]  Donato Malerba,et al.  Using trend clusters for spatiotemporal interpolation of missing data in a sensor network , 2013, J. Spatial Inf. Sci..

[185]  Hua Lu,et al.  Spatiotemporal Data Cleansing for Indoor RFID Tracking Data , 2013, 2013 IEEE 14th International Conference on Mobile Data Management.

[186]  Stefano Spaccapietra,et al.  Semantic trajectories: Mobility data computation and annotation , 2013, TIST.

[187]  Michael Philippsen,et al.  Distributed Low-Latency Out-of-Order Event Processing for High Data Rate Sensor Streams , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[188]  Hans-Peter Kriegel,et al.  Probabilistic Nearest Neighbor Queries on Uncertain Moving Object Trajectories , 2013, Proc. VLDB Endow..

[189]  Hua Lu,et al.  Efficient distance-aware query evaluation on indoor moving objects , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[190]  Nicholas Jing Yuan,et al.  Towards efficient search for activity trajectories , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[191]  Lizhen Wang,et al.  Finding Probabilistic Prevalent Colocations in Spatially Uncertain Data Sets , 2013, IEEE Transactions on Knowledge and Data Engineering.

[192]  Hua Lu,et al.  An RFID and particle filter-based indoor spatial query evaluation system , 2013, EDBT '13.

[193]  Charu C. Aggarwal,et al.  Outlier Analysis , 2013, Springer New York.

[194]  Hui Xiong,et al.  A Stochastic Model for Context-Aware Anomaly Detection in Indoor Location Traces , 2012, 2012 IEEE 12th International Conference on Data Mining.

[195]  Ruizhi Chen,et al.  A Hybrid Smartphone Indoor Positioning Solution for Mobile LBS , 2012, Sensors.

[196]  Deren Li,et al.  Spatial data quality and beyond , 2012, Int. J. Geogr. Inf. Sci..

[197]  Xuemin Lin,et al.  Finding top k most influential spatial facilities over uncertain objects , 2012, IEEE Trans. Knowl. Data Eng..

[198]  Minyi Guo,et al.  Probabilistic Range Query over Uncertain Moving Objects in Constrained Two-Dimensional Space , 2012, IEEE Transactions on Knowledge and Data Engineering.

[199]  Yu Zheng,et al.  Constructing popular routes from uncertain trajectories , 2012, KDD.

[200]  Yufei Tao,et al.  Efficient Computation of Range Aggregates against Uncertain Location-Based Queries , 2012, IEEE Trans. Knowl. Data Eng..

[201]  Deng Pan,et al.  Belief-based cleaning in trajectory sensor streams , 2012, 2012 IEEE International Conference on Communications (ICC).

[202]  Muhammad Aamir Cheema,et al.  Stochastic skylines , 2012, TODS.

[203]  Xing Xie,et al.  Reducing Uncertainty of Low-Sampling-Rate Trajectories , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[204]  Cheng Li,et al.  Optimized access points deployment for WLAN indoor positioning system , 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC).

[205]  Hans-Peter Kriegel,et al.  Querying Uncertain Spatio-Temporal Data , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[206]  Wilfred Ng,et al.  Mining probabilistically frequent sequential patterns in uncertain databases , 2012, EDBT '12.

[207]  Jie Tian,et al.  Spatiotemporal Interpolation Methods for Air Pollution Exposure , 2011, SARA.

[208]  Lin Sun,et al.  Real-Time Detection of Anomalous Taxi Trajectories from GPS Traces , 2011, MobiQuitous.

[209]  Harvey J. Miller,et al.  Kinetic space-time prisms , 2011, GIS.

[210]  Nazim Agoulmine,et al.  Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation , 2011, Sensors.

[211]  Frank Dürr,et al.  Efficient real-time trajectory tracking , 2011, The VLDB Journal.

[212]  Ping Chen,et al.  Clustering network-constrained uncertain trajectories , 2011, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[213]  Hans-Peter Kriegel,et al.  Efficient Probabilistic Reverse Nearest Neighbor Query Processing on Uncertain Data , 2011, Proc. VLDB Endow..

[214]  Nikos Pelekis,et al.  Clustering uncertain trajectories , 2011, Knowledge and Information Systems.

[215]  S. S. Ravi,et al.  SQUISH: an online approach for GPS trajectory compression , 2011, COM.Geo.

[216]  Hua Lu,et al.  Spatio-temporal joins on symbolic indoor tracking data , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[217]  Kai Zheng,et al.  Probabilistic range queries for uncertain trajectories on road networks , 2011, EDBT/ICDT '11.

[218]  Rafael Grimson,et al.  An analytic solution to the alibi query in the space–time prisms model for moving object data , 2011, Int. J. Geogr. Inf. Sci..

[219]  Huidong Jin,et al.  PutMode: prediction of uncertain trajectories in moving objects databases , 2010, Applied Intelligence.

[220]  Alfred Stein,et al.  Thirty Years of Research on Spatial Data Quality: Achievements, Failures, and Opportunities , 2010, Trans. GIS.

[221]  Haixun Wang,et al.  Leveraging spatio-temporal redundancy for RFID data cleansing , 2010, SIGMOD Conference.

[222]  Lars Kulik,et al.  Analysis and evaluation of V*-kNN: an efficient algorithm for moving kNN queries , 2010, The VLDB Journal.

[223]  Alok N. Choudhary,et al.  Uncertain Range Queries for Necklaces , 2010, 2010 Eleventh International Conference on Mobile Data Management.

[224]  Jian Pei,et al.  Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data , 2010, IEEE Transactions on Knowledge and Data Engineering.

[225]  Hua Lu,et al.  Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space , 2010, EDBT '10.

[226]  Muhammad Aamir Cheema,et al.  Multi-guarded safe zone: An effective technique to monitor moving circular range queries , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[227]  Hua Lu,et al.  Scalable continuous range monitoring of moving objects in symbolic indoor space , 2009, CIKM.

[228]  Panos Kalnis,et al.  Enabling search services on outsourced private spatial data , 2009, The VLDB Journal.

[229]  Beng Chin Ooi,et al.  Effectively Indexing Uncertain Moving Objects for Predictive Queries , 2009, Proc. VLDB Endow..

[230]  Dawei Liu,et al.  Efficient anomaly monitoring over moving object trajectory streams , 2009, KDD.

[231]  Xiang Lian,et al.  Efficient processing of probabilistic reverse nearest neighbor queries over uncertain data , 2009, The VLDB Journal.

[232]  Henk Corporaal,et al.  Analytics for the internet of things , 2009, CHI Extended Abstracts.

[233]  Roberto Tamassia,et al.  Continuous probabilistic nearest-neighbor queries for uncertain trajectories , 2009, EDBT '09.

[234]  Elke A. Rundensteiner,et al.  Sequence Pattern Query Processing over Out-of-Order Event Streams , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[235]  Yuan-Ko Huang,et al.  Continuous K-Nearest Neighbor Query for Moving Objects with Uncertain Velocity , 2009, GeoInformatica.

[236]  Chansik Park,et al.  Extended Kalman Filter for wireless LAN based indoor positioning , 2008, Decis. Support Syst..

[237]  Ihab F. Ilyas,et al.  Efficient search for the top-k probable nearest neighbors in uncertain databases , 2008, Proc. VLDB Endow..

[238]  Jian Pei,et al.  Ranking queries on uncertain data: a probabilistic threshold approach , 2008, SIGMOD Conference.

[239]  Chi-Yin Chow,et al.  Probabilistic Verifiers: Evaluating Constrained Nearest-Neighbor Queries over Uncertain Data , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[240]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[241]  Bin Jiang,et al.  Probabilistic Skylines on Uncertain Data , 2007, VLDB.

[242]  Yufei Tao,et al.  Range search on multidimensional uncertain data , 2007, TODS.

[243]  Henry A. Kautz,et al.  Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields , 2007, Int. J. Robotics Res..

[244]  Minos N. Garofalakis,et al.  Adaptive cleaning for RFID data streams , 2006, VLDB.

[245]  A. Rahimi,et al.  Simultaneous localization, calibration, and tracking in an ad hoc sensor network , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[246]  Yufei Tao,et al.  Probabilistic Spatial Queries on Existentially Uncertain Data , 2005, SSTD.

[247]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[248]  Zack J. Butler,et al.  Tracking a moving object with a binary sensor network , 2003, SenSys '03.

[249]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[250]  Sunil Prabhakar,et al.  Querying imprecise data in moving object environments , 2003, IEEE Transactions on Knowledge and Data Engineering.

[251]  Max J. Egenhofer,et al.  Modeling Moving Objects over Multiple Granularities , 2002, Annals of Mathematics and Artificial Intelligence.

[252]  Dieter Pfoser,et al.  Capturing the Uncertainty of Moving-Object Representations , 1999, SSD.

[253]  Gary L. Raines,et al.  Elements of spatial data quality , 1997 .

[254]  Robert Weibel,et al.  Generalization of Spatial Data: Principles and Selected Algorithms , 1996, Algorithmic Foundations of Geographic Information Systems.

[255]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[256]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[257]  Suprio Ray,et al.  Efficient Contact Similarity Query over Uncertain Trajectories , 2021, EDBT.

[258]  Mohammad S. Obaidat,et al.  A decentralised approach to privacy preserving trajectory mining , 2020, Future Gener. Comput. Syst..

[259]  Xujun Zhao,et al.  TAD: A trajectory clustering algorithm based on spatial-temporal density analysis , 2020, Expert Syst. Appl..

[260]  Rupali Wagh,et al.  Quality assurance in big data analytics: An IoT perspective , 2019, Telfor Journal.

[261]  J. Shane Culpepper,et al.  Fast Large-Scale Trajectory Clustering , 2019, Proc. VLDB Endow..

[262]  Muthucumaru Maheswaran,et al.  Towards a Platform for Urban Data Management, Integration and Processing , 2018, IoTBDS.

[263]  Chenyang Lu,et al.  Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network , 2018 .

[264]  Wenchao Xu,et al.  Internet of vehicles in big data era , 2018, IEEE/CAA Journal of Automatica Sinica.

[265]  Christian Søndergaard,et al.  Continuous Spatial Query Processing A Survey of Safe Region Based Techniques , 2018 .

[266]  Danny Weyns,et al.  Cost-Benefit Analysis at Runtime for Self-adaptive Systems Applied to an Internet of Things Application , 2018, ENASE.

[267]  Julio Cesar Stacchini de Souza,et al.  Data Compression in Smart Distribution Systems via Singular Value Decomposition , 2017, IEEE Transactions on Smart Grid.

[268]  Barbara Pfeffer,et al.  Smoothing Forecasting And Prediction Of Discrete Time Series , 2016 .

[269]  Hua Lu,et al.  Finding Frequently Visited Indoor POIs Using Symbolic Indoor Tracking Data , 2016, EDBT.

[270]  Kai Zheng,et al.  Go Beyond Raw Trajectory Data: Quality and Semantics , 2015, IEEE Data Eng. Bull..

[271]  Wesley W. Chu,et al.  Data Mining and Knowledge Discovery for Big Data , 2014 .

[272]  Jiawei Han,et al.  Mining Periodicity from Dynamic and Incomplete Spatiotemporal Data , 2014 .

[273]  Karine Zeitouni,et al.  Spatio-temporal compression of trajectories in road networks , 2014, GeoInformatica.

[274]  Sankar K. Pal,et al.  Rough Sets, Kernel Set, and Spatiotemporal Outlier Detection , 2014, IEEE Transactions on Knowledge and Data Engineering.

[275]  Ralf Hartmut Güting,et al.  A generic data model for moving objects , 2012, GeoInformatica.

[276]  Ying Zhang,et al.  Efficient Computation of Range Aggregates against Uncertain Location-Based Queries , 2012, IEEE Transactions on Knowledge and Data Engineering.

[277]  Probabilistic Filter,et al.  Discrete PDF vs. Continuous PDF A Novel Probabilistic Pruning Approach to Speed Up Similarity Queries in Uncertain Databases , 2010 .

[278]  Derya Birant,et al.  ST-DBSCAN: An algorithm for clustering spatial-temporal data , 2007, Data Knowl. Eng..

[279]  B. R. Badrinath,et al.  DV Based Positioning in Ad Hoc Networks , 2003, Telecommun. Syst..

[280]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .