α scattering cross sections on C12 with a microscopic coupled-channels calculation

$\alpha$ elastic and inelastic scattering on $^{12}$C is investigated with the coupled-channel calculation using microscopic $\alpha$-$^{12}$C potentials, which are derived by folding the Melbourne $g$-matrix $NN$ interaction with the matter and transition densities of $^{12}$C. These densities are obtained by a microscopic structure model of the antisymmetrized molecular dynamics combined with and without the $3\alpha$ generator coordinate method. The calculation reproduces satisfactorily well the observed elastic and inelastic cross sections at incident energies of $E_\alpha=130$~MeV, 172.5~MeV, 240~MeV, and 386~MeV with no adjustable parameter. Isoscalar monopole and dipole excitations to the $0^+_2$, $0^+_3$, and $1^-_1$ states in the $\alpha$ scattering are discussed.

[1]  Makoto Ito Evidence of an enhanced nuclear radius of the α-halo state via α+C12 inelastic scattering , 2018 .

[2]  T. Kawabata,et al.  Systematic analysis of inelastic α scattering off self-conjugate A=4n nuclei , 2018 .

[3]  Ulf-G. Meissner,et al.  Microscopic clustering in light nuclei , 2017, Reviews of Modern Physics.

[4]  J. Kelley,et al.  Energy levels of light nuclei A = 12 , 2017 .

[5]  Y. Kanada-En’yo,et al.  Cluster and toroidal aspects of isoscalar dipole excitations in 12 C , 2017, 1709.03045.

[6]  K. Ogata,et al.  Consistency between the monopole strength of the Hoyle state determined by structural calculation and that extracted from reaction observables , 2016, 1603.01805.

[7]  Y. Kanada-En’yo Isoscalar monopole and dipole excitations of cluster states and giant resonances inC12 , 2015, 1512.03619.

[8]  H. Horiuchi,et al.  Cluster models from RGM to alpha condensation and beyond , 2015 .

[9]  M. Yahiro,et al.  Microscopic approach to He 3 scattering , 2015, 1503.06257.

[10]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[11]  S. Ishikawa Decay and structure of the Hoyle state , 2014, 1412.4176.

[12]  H. Fynbo,et al.  The Hoyle state in 12 C , 2014 .

[13]  M. Yahiro,et al.  Microscopic optical potentials for He 4 scattering , 2014, 1404.2735.

[14]  A. Breskin,et al.  Unambiguous identification of the second 2+ state in 12C and the structure of the Hoyle state. , 2013, Physical review letters.

[15]  E. Hiyama,et al.  Complex-scaling calculation of three-body resonances using complex-range Gaussian basis functions: Application to 3α resonances in 12C , 2013, 1302.4256.

[16]  Jerry P. Draayer,et al.  Hoyle state and rotational features in Carbon-12 within a no-core shell-model framework , 2012, 1212.2255.

[17]  I. Angeli,et al.  Table of experimental nuclear ground state charge radii: An update , 2013 .

[18]  Evgeny Epelbaum,et al.  Structure and rotations of the Hoyle state. , 2012, Physical review letters.

[19]  M. Kimura,et al.  Antisymmetrized molecular dynamics and its applications to cluster phenomena , 2012, 1202.1864.

[20]  S. M. Perez,et al.  Consistent analysis of the 2+ excitation of the C-12 Hoyle state populated in proton and alpha-particle inelastic scattering , 2012 .

[21]  K. Ikeda,et al.  Recent Developments in Nuclear Cluster Physics , 2012 .

[22]  T. Kawabata,et al.  Candidate for the 2 + excited Hoyle state at E x ∼ 10 MeV in 12 C , 2011 .

[23]  M. Takashina Interpretation of a diffraction phenomenon observed in the angular distribution of {alpha} inelastic scattering on {sup 12}C exciting the 0{sub 2}{sup +} state , 2008 .

[24]  Do Cong Cuong,et al.  Missing monopole strength of the Hoyle state in the inelastic α + 12C scattering , 2007, 0712.2081.

[25]  Y. Kanada-En’yo The Structure of Ground and Excited States of 12C , 2007 .

[26]  A. Richter,et al.  Structure of the Hoyle state in 12C. , 2007, Physical review letters.

[27]  G. Röpke,et al.  Inelastic form factors to alpha-particle condensate states in 12C and 16O: What can we learn? , 2006, nucl-th/0601035.

[28]  Y. Kanada-En’yo Structure of ground and excited states of C-12 , 2006 .

[29]  B. Vlahovic,et al.  0+ states of the 12C nucleus: the Faddeev calculation in configuration space , 2005 .

[30]  H. Horiuchi,et al.  New Treatment of Resonances with a Bound State Approximation Using a Pseudo-Potential , 2005, nucl-th/0505077.

[31]  S. Ohkubo,et al.  Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering , 2004 .

[32]  K. Katō,et al.  Three-alpha resonances in 12C , 2004 .

[33]  T.Neff,et al.  Cluster structures within Fermionic Molecular Dynamics , 2003, nucl-th/0312130.

[34]  D. Youngblood,et al.  Isoscalar electric multipole strength in C-12 , 2003 .

[35]  G. Ropke,et al.  Analysis of previous microscopic calculations for the second 0 + state in 12 C in terms of 3-α particle Bose-condensed state , 2003, nucl-th/0302017.

[36]  T. Neff,et al.  Tensor correlations in the unitary correlation operator method , 2002, nucl-th/0207013.

[37]  G. Ropke,et al.  Alpha cluster condensation in C-12 and O-16 , 2001, nucl-th/0110014.

[38]  Y. Kanada-En’yo Variation after angular momentum projection for the study of excited states based on antisymmetrized molecular dynamics , 1998, nucl-th/0204039.

[39]  Horiuchi,et al.  Structure of Li and Be isotopes studied with antisymmetrized molecular dynamics. , 1995, Physical review. C, Nuclear physics.

[40]  Horiuchi,et al.  Neutron-rich B isotopes studied with antisymmetrized molecular dynamics. , 1995, Physical review. C, Nuclear physics.

[41]  J. Schnack,et al.  Fermionic molecular dynamics for ground states and collisions of nuclei , 1995 .

[42]  P. Turek,et al.  Inelastic scattering of 172.5 MeV α particles by 12C , 1987 .

[43]  Baye,et al.  Microscopic theory of the 8Be( alpha, gamma )12C reaction in a three-cluster model. , 1987, Physical review. C, Nuclear physics.

[44]  M. Kamimura TRANSITION DENSITIES BETWEEN THE 0(1)+,2(1)+,4(1)+,0(2)+,2(2)+,1(1)- AND 3(1)- STATES IN C-12 DERIVED FROM THE 3-ALPHA RESONATING-GROUP WAVE-FUNCTIONS , 1981 .

[45]  K. Ikeda,et al.  Nucleus-Nucleus Interaction and Nuclear Saturation Property Microscopic Study of 16O+16O Interaction by New Effective Nuclear Force , 1980 .

[46]  K. Ikeda,et al.  Chapter II. Comprehensive Study of Alpha-Nuclei , 1980 .

[47]  N. Yamaguchi,et al.  Effective Interaction with Three-Body Effects , 1979 .

[48]  G. R. Satchler,et al.  Folding model potentials from realistic interactions for heavy-ion scattering , 1979 .

[49]  A. Miyazaki,et al.  Acoustic Phonon Softening and Spontaneous Strains in KD3(SeO3)2 , 1978 .

[50]  Hajime Tanaka,et al.  Structure of the Excited States in 12C. II , 1977 .

[51]  Y. Horikawa,et al.  DETERMINATION OF THE DEFORMATION IN $sup 12$C FROM ELECTRON SCATTERING. , 1971 .

[52]  J. Mccarthy,et al.  Elastic electron scattering from c-12 and o-16 , 1970 .

[53]  A. Yamaguchi,et al.  ELECTROEXCITATION OF THE 10.8-MeV (1$sup -$ T = 0) LEVEL OF $sup 12$C AND THE 7.12-MeV (1$sup -$ T = 0) LEVEL OF $sup 16$O. , 1969 .

[54]  R. Tamagaki Potential Models of Nuclear Forces at Small Distances , 1968 .

[55]  H. Crannell Elastic and Inelastic Electron Scattering from C 12 and O 16 , 1966 .

[56]  A. B. Volkov Equilibrium deformation calculations of the ground state energies of 1p shell nuclei , 1965 .