Comparative research on cyclic ablation behavior of C/C-ZrC-SiC and C/C-ZrC composites at temperatures above 2000 ºC

[1]  Q. Fu,et al.  Effect of temperature gradient on the ablation and flexural behavior of C/C-ZrC composites , 2021 .

[2]  Jiaping Zhang,et al.  Effect of loading spectrum with different single pulsing time on the cyclic ablation of C/C-SiC-ZrB2-ZrC composites in plasma , 2021, Corrosion Science.

[3]  Wei Li,et al.  Ablation behavior of ZrC-SiC-ZrB2 and ZrC-SiC inhibited carbon/carbon composites components under ultrahigh temperature conditions , 2021 .

[4]  Wei Li,et al.  Cyclic ablation behavior of C/C-ZrC-SiC-ZrB2 composites under oxyacetylene torch with two heat fluxes at the temperatures above 2000 ºC , 2021 .

[5]  Qizhong Huang,et al.  Effect of ZrC particle distribution on the ablation resistance of C/C-SiC-ZrC composites fabricated using precursor infiltration pyrolysis , 2020 .

[6]  Hejun Li,et al.  Effects of ZrC/SiC ratios on mechanical and ablation behavior of C/C–ZrC–SiC composites prepared by carbothermal reaction of hydrothermal co-deposited oxides , 2020 .

[7]  Hui‐Ming Cheng,et al.  Mechanical, oxidation and ablation properties of C/(C-SiC)CVI-(ZrC-SiC)PIP composites , 2020 .

[8]  Hejun Li,et al.  Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition , 2019, Ceramics International.

[9]  Wei Li,et al.  Ablation behavior of C/C-ZrC-SiC composites prepared by reactive melt infiltration under oxyacetylene torch at two heat fluxes , 2018, Ceramics International.

[10]  Brian Thompson,et al.  Cyclic ablation of high-Emissivity Sm-Doped ZrB 2 /SiC coatings on alumina substrates , 2017 .

[11]  Y. Kubota,et al.  Oxidation behavior of ZrB 2 -SiC-ZrC in oxygen-hydrogen torch environment , 2017 .

[12]  H. Hu,et al.  Microstructure and properties of ablative C/ZrC–SiC composites prepared by reactive melt infiltration of zirconium and vapour silicon infiltration , 2017 .

[13]  Wei Sun,et al.  Microstructure and ablation behaviors of a novel gradient C/C-ZrC-SiC composite fabricated by an improved reactive melt infiltration , 2016 .

[14]  B. Vaidhyanathan,et al.  Heat flux mapping of oxyacetylene flames and their use to characterise Cf-HfB2 composites , 2016 .

[15]  Erica L. Corral,et al.  High‐Temperature Isothermal Oxidation of Ultra‐High Temperature Ceramics Using Thermal Gravimetric Analysis , 2016 .

[16]  Liping Wang,et al.  Ablation mechanism of C/C–ZrB2–ZrC–SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2 , 2015 .

[17]  Erica L. Corral,et al.  Oxidation Behavior of Aerospace Materials in High Enthalpy Flows Using an Oxyacetylene Torch Facility , 2015 .

[18]  M. Akbari,et al.  Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite , 2014 .

[19]  Hejun Li,et al.  Cyclic ablation behavior of C/C–ZrC–SiC composites under oxyacetylene torch , 2014 .

[20]  Jingjun Xu,et al.  Effects of ZrB2 and SiC dual addition on the oxidation resistance of graphite at 1600-2000 C , 2013 .

[21]  Hejun Li,et al.  Effect of heat flux on ablation behaviour and mechanism of C/C–ZrB2–SiC composite under oxyacetylene torch flame , 2013 .

[22]  Xiaohong Shi,et al.  Ablation in different heat fluxes of C/C composites modified by ZrB2–ZrC and ZrB2–ZrC–SiC particles , 2013 .

[23]  Hejun Li,et al.  Ablation behavior and mechanism of C/C–ZrC–SiC composites under an oxyacetylene torch at 3000 °C , 2013 .

[24]  Yu Zhou,et al.  Influence of reactive melt infiltration parameters on microstructure and properties of low temperature derived Cf/ZrC composites , 2013 .

[25]  D. Hui,et al.  Improved ablation resistance of carbon–phenolic composites by introducing zirconium diboride particles , 2013 .

[26]  J. Binner,et al.  UHTC–carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation , 2013 .

[27]  S. Bai,et al.  C/C–ZrC composite prepared by chemical vapor infiltration combined with alloyed reactive melt infiltration , 2012 .

[28]  Lai-fei Cheng,et al.  C/C–SiC–ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy , 2012 .

[29]  Hejun Li,et al.  Effect of reaction melt infiltration temperature on the ablation properties of 2D C/C–SiC–ZrC composites , 2012 .

[30]  Zhihua Yang,et al.  Oxidation of ZrC–30 vol% SiC composite in air from low to ultrahigh temperature , 2012 .

[31]  Li Kezhi,et al.  Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites , 2010 .

[32]  Jiecai Han,et al.  Oxidation-resistant ZrB2-SiC composites at 2200 °C , 2008 .

[33]  Ke Yang,et al.  Ablation behaviors of ultra-high temperature ceramic composites , 2007 .

[34]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[35]  Donald M. Curry,et al.  Oxidation microstructure studies of reinforced carbon/carbon , 2006 .

[36]  W. Fahrenholtz The ZrB2 Volatility Diagram , 2005 .

[37]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[38]  Hong Zhou,et al.  Kinetics Model for the Growth of Silicon Carbide by the Reaction of Liquid Silicon with Carbon , 1995 .

[39]  W. C. Butterman,et al.  Zircon Stability and the Zr02-Si02 Phase Diagram , 1967 .