Void size, shape, and orientation effects in shear-dominated void coalescence across scales

[1]  K. L. Nielsen,et al.  The role of intermetallic particles on mode I crack propagation mechanisms in metal plates , 2021, Engineering Fracture Mechanics.

[2]  K. L. Nielsen,et al.  On the dependence of crack surface morphology and energy dissipation on microstructure in ductile plate tearing , 2021, International Journal of Fracture.

[3]  C. F. Niordson,et al.  Size effect on void coalescence under intense shear , 2021 .

[4]  E. Mart'inez-Paneda,et al.  Interaction of void spacing and material size effect on inter-void flow localisation , 2020, Journal of Applied Mechanics.

[5]  C. F. Niordson,et al.  Investigation of a gradient enriched Gurson-Tvergaard model for porous strain hardening materials , 2019, European Journal of Mechanics - A/Solids.

[6]  C. F. Niordson,et al.  A finite strain FE-Implementation of the Fleck-Willis gradient theory: Rate-independent versus visco-plastic formulation , 2019 .

[7]  C. F. Niordson,et al.  A homogenized model for size-effects in porous metals , 2019 .

[8]  David Morin,et al.  A Lode-dependent Gurson model motivated by unit cell analyses , 2017 .

[9]  John W. Hutchinson,et al.  Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol , 2017 .

[10]  S. Kyriakides,et al.  Ductile failure of aluminum alloy tubes under combined torsion and tension , 2016 .

[11]  Thomas Pardoen,et al.  Failure of metals I: Brittle and ductile fracture , 2016 .

[12]  V. Tvergaard Effect of initial void shape on ductile failure in a shear field , 2015 .

[13]  B. N. Legarth Plasticity dependent damage evolution in composites with strain-gradient effects , 2015 .

[14]  W. Meng,et al.  Thickness dependence of flow stress of Cu thin films in confined shear plastic flow , 2014 .

[15]  C. F. Niordson,et al.  A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations , 2014 .

[16]  Imad Barsoum,et al.  Tension-torsion fracture experiments-Part I : Experiments and a procedure to evaluate the equivalent plastic strain , 2013 .

[17]  C. F. Niordson,et al.  A 2D finite element implementation of the Fleck–Willis strain-gradient flow theory , 2013 .

[18]  Stelios Kyriakides,et al.  Ductile failure under combined shear and tension , 2013 .

[19]  G. Bonnet,et al.  A Gurson-type model accounting for void size effects , 2013 .

[20]  Viggo Tvergaard,et al.  Effect of stress-state and spacing on voids in a shear-field , 2012 .

[21]  Tore Børvik,et al.  Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL , 2012 .

[22]  K. Danas,et al.  Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations , 2012 .

[23]  K. L. Nielsen,et al.  Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D , 2012, International Journal of Fracture.

[24]  K. L. Nielsen,et al.  Effect of Contact Conditions on Void Coalescence at Low Stress Triaxiality Shearing , 2012 .

[25]  Dirk Mohr,et al.  On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles , 2011 .

[26]  C. F. Niordson,et al.  BASIC STRAIN GRADIENT PLASTICITY THEORIES WITH APPLICATION TO CONSTRAINED FILM DEFORMATION , 2011 .

[27]  K. L. Nielsen,et al.  Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing , 2011 .

[28]  Thomas Pardoen,et al.  The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension , 2011 .

[29]  K. L. Nielsen,et al.  Relations between a micro-mechanical model and a damage model for ductile failure in shear , 2010 .

[30]  L. Dormieux,et al.  An extension of Gurson model incorporating interface stresses effects , 2010 .

[31]  Yuanli Bai,et al.  Partially coupled anisotropic fracture model for aluminum sheets , 2010 .

[32]  L. Bardella Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin , 2010 .

[33]  C. F. Niordson,et al.  Strain gradient effects on cyclic plasticity , 2010 .

[34]  J. Leblond,et al.  Ductile Fracture by Void Growth to Coalescence , 2010 .

[35]  V. Tvergaard Behaviour of voids in a shear field , 2009 .

[36]  Norman A. Fleck,et al.  A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier , 2009 .

[37]  V. Tvergaard Shear deformation of voids with contact modelled by internal pressure , 2008 .

[38]  C. F. Niordson Void growth to coalescence in a non-local material , 2008 .

[39]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[40]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear—Micromechanics , 2007 .

[41]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear : Experiments , 2007 .

[42]  L. Bardella Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved , 2007 .

[43]  Jinkook Kim,et al.  Modeling of Ductile Fracture: Significance of Void Coalescence , 2006 .

[44]  Jinkook Kim,et al.  On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution , 2005 .

[45]  T. Wierzbicki,et al.  Calibration and evaluation of seven fracture models , 2005 .

[46]  Yonggang Huang,et al.  The modified Gurson model accounting for the void size effect , 2004 .

[47]  T. Wierzbicki,et al.  On fracture locus in the equivalent strain and stress triaxiality space , 2004 .

[48]  XinMing Qiu,et al.  The size effect on void growth in ductile materials , 2003 .

[49]  Peter Gudmundson,et al.  A unified treatment of strain gradient plasticity , 2004 .

[50]  A. A. Benzerga Micromechanics of coalescence in ductile fracture , 2002 .

[51]  G. Pharr,et al.  The correlation of the indentation size effect measured with indenters of various shapes , 2002 .

[52]  Jean-Baptiste Leblond,et al.  Theoretical models for void coalescence in porous ductile solids. II. Coalescence “in columns” , 2001 .

[53]  Huajian Gao,et al.  Taylor-based nonlocal theory of plasticity , 2001 .

[54]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[55]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity—II. Analysis , 2000 .

[56]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[57]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[58]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[59]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[60]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[61]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[62]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[63]  V. Tvergaard Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells , 1976 .

[64]  J. Rice,et al.  Finite-element formulations for problems of large elastic-plastic deformation , 1975 .

[65]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .