Co-evolutionary networks of genes and cellular processes across fungal species

[1]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[2]  Ute Baumann,et al.  Estimating the annotation error rate of curated GO database sequence annotations , 2007, BMC Bioinformatics.

[3]  Zhen Liu,et al.  Refined phylogenetic profiles method for predicting protein-protein interactions , 2005, Bioinform..

[4]  T Gojobori,et al.  Codon substitution in evolution and the "saturation" of synonymous changes. , 1983, Genetics.

[5]  D. M. Greenberg,et al.  Methyl transfering enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine) , 1961 .

[6]  Michael Weiss,et al.  Phylogenomics reveal a robust fungal tree of life. , 2006, FEMS yeast research.

[7]  Teresa M. Przytycka,et al.  Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment , 2007, BMC Bioinformatics.

[8]  A. E. Hirsh,et al.  Functional genomic analysis of the rates of protein evolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[10]  Nello Cristianini,et al.  CAFE: a computational tool for the study of gene family evolution , 2006, Bioinform..

[11]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[12]  M. Pagel,et al.  Large Punctuational Contribution of Speciation to Evolutionary Divergence at the Molecular Level , 2006, Science.

[13]  H. Akashi,et al.  Gene expression and molecular evolution. , 2001, Current opinion in genetics & development.

[14]  George Newport,et al.  A Human-Curated Annotation of the Candida albicans Genome , 2005, PLoS genetics.

[15]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[16]  G. Butler,et al.  Yeast genome evolution—the origin of the species , 2007, Yeast.

[17]  A. Valencia,et al.  High-confidence prediction of global interactomes based on genome-wide coevolutionary networks , 2008, Proceedings of the National Academy of Sciences.

[18]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[19]  T. Miller Systematics and evolution , 1987 .

[20]  A. E. Hirsh,et al.  Adjusting for selection on synonymous sites in estimates of evolutionary distance. , 2005, Molecular biology and evolution.

[21]  T. Buza,et al.  Gene Ontology annotation quality analysis in model eukaryotes , 2008, Nucleic acids research.

[22]  K.,et al.  Phosphatidylcholine synthesis in yeast , 2003 .

[23]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[24]  Robert Bauer,et al.  Phylogeny and systematics of the fungi with special reference to the Ascomycota and Basidiomycota. , 2002, Chemical immunology.

[25]  Gang Liu,et al.  Automatic clustering of orthologs and inparalogs shared by multiple proteomes , 2006, ISMB.

[26]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[27]  Ben Lehner,et al.  Evolutionary plasticity of genetic interaction networks , 2008, Nature Genetics.

[28]  A. Valencia,et al.  In silico two‐hybrid system for the selection of physically interacting protein pairs , 2002, Proteins.

[29]  Matteo Pellegrini,et al.  Prolinks: a database of protein functional linkages derived from coevolution , 2004, Genome Biology.

[30]  Arun K. Ramani,et al.  Exploiting the co-evolution of interacting proteins to discover interaction specificity. , 2003, Journal of molecular biology.

[31]  Yitzhak Pilpel,et al.  Differential translation efficiency of orthologous genes is involved in phenotypic divergence of yeast species , 2007, Nature Genetics.

[32]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[33]  Berend Snel,et al.  Quantifying modularity in the evolution of biomolecular systems. , 2004, Genome research.

[34]  Subhajyoti De,et al.  Functional protein divergence in the evolution of Homo sapiens , 2008, Genome Biology.

[35]  A. E. Hirsh,et al.  Evolutionary Rate in the Protein Interaction Network , 2002, Science.

[36]  L. Wernisch,et al.  Solving the riddle of codon usage preferences: a test for translational selection. , 2004, Nucleic acids research.

[37]  D. M. Krylov,et al.  Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. , 2003, Genome research.

[38]  Olivier Bodenreider,et al.  Co-evolutionary Rates of Functionally Related Yeast Genes , 2006, Evolutionary bioinformatics online.

[39]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[40]  C. Wilke,et al.  Why highly expressed proteins evolve slowly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. E. Hirsh,et al.  Protein dispensability and rate of evolution , 2001, Nature.

[42]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[43]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[44]  B. Snel,et al.  The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model , 2004, EMBO reports.

[45]  David Botstein,et al.  The Stanford Microarray Database , 2001, Nucleic Acids Res..

[46]  Sudhir Kumar,et al.  Molecular clocks: four decades of evolution , 2005, Nature Reviews Genetics.

[47]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[48]  A. E. Hirsh,et al.  Coevolution of gene expression among interacting proteins , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Shamir,et al.  A fast algorithm for joint reconstruction of ancestral amino acid sequences. , 2000, Molecular biology and evolution.

[50]  Eugene V Koonin,et al.  Getting positive about selection , 2003, Genome Biology.

[51]  Chern-Sing Goh,et al.  Co-evolutionary analysis reveals insights into protein-protein interactions. , 2002, Journal of molecular biology.

[52]  Z. Yang,et al.  Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. , 2000, Molecular biology and evolution.

[53]  W. Doolittle,et al.  Do orthologous gene phylogenies really support tree-thinking? , 2005, BMC Evolutionary Biology.

[54]  Simon Kasif,et al.  Identification of functional links between genes using phylogenetic profiles , 2003, Bioinform..

[55]  M. Stanhope,et al.  Local Molecular Clocks in Three Nuclear Genes: Divergence Times for Rodents and Other Mammals and Incompatibility Among Fossil Calibrations , 2003, Journal of Molecular Evolution.

[56]  C. Pál,et al.  An integrated view of protein evolution , 2006, Nature Reviews Genetics.

[57]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[58]  Zhenjun Hu,et al.  Gene annotation and network inference by phylogenetic profiling , 2006, BMC Bioinformatics.

[59]  C. Markert,et al.  Evolution of the Gene , 1948, Nature.

[60]  Nikolay V Dokholyan,et al.  The Coordinated Evolution of Yeast Proteins Is Constrained by Functional Modularity , 2022 .

[61]  Roded Sharan,et al.  Gene loss rate: a probabilistic measure for the conservation of eukaryotic genes , 2006, Nucleic acids research.

[62]  C. Kurtzman,et al.  Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. , 2003, FEMS yeast research.