A comparison of lifetime prediction methods for a thermal fatigue experiment

This paper is dedicated to the comparison of several numerical models for estimating the lifetime in a fatigue experiment. The models simulate the SPLASH experiment, which produces thermal fatigue by locally quenching stainless steel specimens. All models predict first a stabilized mechanical state (plastic shakedown) and then a lifetime prediction using several fatigue crack initiation criteria. The numerical methods are either completely nonlinear or combine approximate elastic solutions obtained from minimizing a potential energy or closed form solutions with a Neuber or Zarka technique to estimate directly the elastoplastic state. The fatigue criteria used are Manson, dissipated energy and dissipated energy combined with a hydrostatic pressure term. The latter had provided a best prediction over a series of anisothermal and isothermal LCF experiments in a classical fatigue analysis. The analysis shows that for fatigue criteria taking into account the triaxiality of the mechanical response we obtain a systematic and conservative error. As a consequence of this work, we show that simplified models can be used for lifetime prediction. Moreover the paper provides a general technique to asses from the point of view of the design engineer the combination between a numerical method and a fatigue criterion.

[1]  Eric Charkaluk,et al.  A computational approach to thermomechanical fatigue , 2004 .

[2]  Bernard Halphen,et al.  Plastic and visco-plastic materials with generalized potential , 1974 .

[3]  Erhard Krempl,et al.  Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers , 2003 .

[4]  Eric Charkaluk,et al.  An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron , 2000 .

[5]  Stéphane Chapuliot,et al.  A computational lifetime prediction of a thermal shock experiment. Part I: thermomechanical modelling and lifetime prediction , 2006 .

[6]  Valérie Maillot Amorçage et propagation de réseaux de fissures de fatigue thermique dans un acier inoxydable austénitique de type X2 CrNi18-09 (AISI 304 L) , 2003 .

[7]  D. Socie,et al.  Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel , 1995 .

[8]  John W. H. Price,et al.  Using S–N curves to analyse cracking due to repeated thermal shock , 2004 .

[9]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[10]  Leon M Keer,et al.  Application of direct method for a nonlinear-kinematic-hardening material under rolling/sliding line contact: Constant ratchetting rate , 1997 .

[11]  Quoc Son Nguyen,et al.  On shakedown analysis in hardening plasticity , 2003 .

[12]  J. Mandel,et al.  Adaptation d'une structure elastoplastique a ecrouissage cinematique , 1977 .

[13]  A. Fissolo,et al.  2D simulation of the initiation and propagation of crack array under thermal fatigue , 2005 .

[14]  G. Inglebert,et al.  Quick analysis of inelastic structures using a simplified method , 1989 .

[15]  I. V. Papadopoulos,et al.  Exploring the High-Cycle Fatigue Behaviour of Metals from the Mesoscopic Scale , 1996 .

[16]  Gérard Degallaix,et al.  Thermal fatigue crack networks parameters and stability: an experimental study , 2005 .

[17]  Quoc Son Nguyen,et al.  On shakedown theorems in hardening plasticity , 2001 .

[18]  K. Dang Van,et al.  A unified approach for high and low cycle fatigue based on shakedown concepts , 2003 .

[19]  Thomas J. Mackin,et al.  Thermal cracking in disc brakes , 2002 .

[20]  Jean Salençon,et al.  Mécanique des milieux continus , 2002 .

[21]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[22]  J. Zarka,et al.  A new approach in inelastic analysis of structures , 1990 .

[23]  K. Dang Van,et al.  Fatigue design of structures under thermomechanical loadings , 2002 .

[24]  A. Fissolo,et al.  Thermal fatigue behaviour for a 316 L type steel , 1996 .

[25]  R. L. Roche,et al.  Correction of the Poisson effect in the elastic analysis of low-cycle fatigue , 1985 .

[26]  N. Haddar,et al.  Thermal fatigue crack networks: an computational study , 2005 .

[27]  Ky Dang Van,et al.  High-Cycle Metal Fatigue , 1999 .

[28]  D. J. Marsh,et al.  A THERMAL SHOCK FATIGUE STUDY OF TYPE 304 AND 316 STAINLESS STEELS , 1981 .

[29]  Andrei Kotousov,et al.  Features of fatigue crack growth due to repeated thermal shock , 2002 .

[30]  Rajiv Shivpuri,et al.  Computer modeling and prediction of thermal fatigue cracking in die-casting tooling , 2004 .

[31]  Franck Morel,et al.  A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading , 2000 .

[32]  R. P. Skelton,et al.  Energy criterion for high temperature low cycle fatigue failure , 1991 .

[33]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[34]  Jean Lemaitre,et al.  Multiaxial Creep Fatigue under Anisothermal Conditions , 2000 .

[35]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[36]  Eric Charkaluk,et al.  Thermomechanical design in the automotive industry , 2004 .