An improved deep submicrometer MOSFET RF nonlinear model with new breakdown current model and drain-to-substrate nonlinear coupling

An improved deep submicrometer (0.25 /spl mu/m) MOSFET radio-frequency (RF) large signal model that incorporates a new breakdown current model and drain-to-substrate nonlinear coupling was developed and investigated using various experiments. An accurate breakdown model is required for deep submicrometer MOSFETs due to their relatively low breakdown voltage. For the first time, this RF nonlinear model incorporates the breakdown voltage turnover trend into a continuously differentiable channel current model and a new nonlinear coupling circuit between the drain and the lossy substrate. The robustness of the model is verified with measured pulsed I-V, S-parameters, power characteristics, harmonic distortion, and intermodulation distortion levels at different input and output termination conditions, operating biases, and frequencies.

[1]  M. Miller,et al.  A new empirical large signal model for silicon RF LDMOS FETs , 1997, 1997 IEEE MTT-S Symposium on Technologies for Wireless Applications Digest.

[2]  Yi-Jen Chan,et al.  Characteristics of deep-submicrometer MOSFET and its empirical nonlinear RF model , 1998 .

[3]  Mansun Chan,et al.  A physical and scalable I-V model in BSIM3v3 for analog/digital circuit simulation , 1997 .

[4]  U. Lott,et al.  Microwave frequency measurements and modeling of MOSFETs on low resistivity silicon substrates , 1996, Proceedings of International Conference on Microelectronic Test Structures.

[5]  R.M.D.A. Velghe,et al.  Compact MOS modeling for analog circuit simulation , 1993, Proceedings of IEEE International Electron Devices Meeting.

[6]  Dimitri A. Antoniadis,et al.  Modeling the I-V characteristics of fully-depleted SOI MOSFETs including self-heating , 1994, Proceedings. IEEE International SOI Conference.

[7]  E. Chen,et al.  Temperature dependent MOSFET RF large signal model incorporating self heating effects , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[8]  Suet Fong Tin,et al.  Substrate network modeling for CMOS RF circuit simulation , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[9]  S.E. Laux,et al.  A study of channel avalanche breakdown in scaled n-MOSFET's , 1987, IEEE Transactions on Electron Devices.

[10]  N. Camilleri,et al.  A silicon MOS process for integrated RF power amplifiers , 1996, IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers.

[11]  G. Guegan,et al.  High-frequency performance of submicrometer channel-length silicon MOSFETs , 1991, IEEE Electron Device Letters.

[12]  Mario Pinto-Guedes,et al.  A circuit simulation model for bipolar-induced breakdown in MOSFET , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Martin L. Schmatz,et al.  A nonlinear microwave MOSFET model for SPICE simulators , 1998 .

[14]  W. R. Curtice,et al.  Self-Consistent GaAs FET Models for Amplifier Design and Device Diagnostics , 1984 .

[15]  W.R. Curtice,et al.  A new dynamic electro-thermal nonlinear model for silicon RF LDMOS FETs , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[16]  H. Zirath,et al.  A new empirical nonlinear model for HEMT and MESFET devices , 1992 .

[17]  Mau-Chung Frank Chang,et al.  High-frequency application of MOS compact models and their development for scalable RF model libraries , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[18]  Thomas J. Brazil,et al.  A scalable general-purpose model for microwave FETs including DC/AC dispersion effects , 1997 .

[19]  S. Asai,et al.  A numerical model of avalanche breakdown in MOSFET's , 1978, IEEE Transactions on Electron Devices.

[20]  Hei Wong,et al.  A physically-based MOS transistor avalanche breakdown model , 1995 .

[21]  J. Teyssier,et al.  A new nonlinear I(V) model for FET devices including breakdown effects , 1994, IEEE Microwave and Guided Wave Letters.

[22]  E. Morifuji,et al.  0.2 /spl mu/m analog CMOS with very low noise figure at 2 GHz operation , 1996, 1996 Symposium on VLSI Technology. Digest of Technical Papers.

[23]  Cheon Soo Kim,et al.  Unique extraction of substrate parameters of common-source MOSFETs , 1999 .