Thin presentation of knots and lens spaces

This paper concerns thin presentations of knots K in closed 3-manifolds M 3 which produce S 3 by Dehn surgery, for some slope .I f Mdoes not have a lens space as a connected summand, we rst prove that all such thin presentations, with respect to any spine of M have only local maxima. If M is a lens space and K has an essential thin presentation with respect to a given standard spine (of lens space M ) with only local maxima, then we show that K is a 0-bridge or 1-bridge braid in M ; furthermore, we prove the minimal intersection between K and such spines to be at least three, and nally, if the core of the surgery K yields S 3 by r -Dehn surgery, then we prove the following inequality: jrj 2 g ,w here gis the genus of K. AMS Classication 57M25; 57N10, 57M15

[1]  Ying‐Qing Wu Thin position and essential planar surfaces , 2004, math/0610866.

[2]  D. Rolfsen Knots and Links , 2003 .

[3]  D. Matignon,et al.  Longitudinal slope and Dehn fillings , 2003 .

[4]  D. Bachman Non-parallel essential surfaces in knot complements , 2003, math/0302272.

[5]  D. Matignon,et al.  Producing essential 2-spheres , 2002 .

[6]  E. Sedgwick,et al.  Thin position for a connected sum of small knots , 2002, math/0205125.

[7]  M. Eudave-muñoz Incompressible surfaces and (1,1)-knots , 2002 .

[8]  市原 一裕 Exceptional surgeries and genera of knots (双曲空間及び離散群の研究 研究集会報告集) , 2001 .

[9]  D. Matignon,et al.  MINIMISING THE BOUNDARIES OF PUNCTURED PROJECTIVE PLANES IN S3 , 2001 .

[10]  K. Ichihara Exceptional surgeries and genera of knots , 2001 .

[11]  M. Eudave-muñoz Incompressible surfaces in tunnel number one knot complements , 1999 .

[12]  H. Goda,et al.  Dehn surgeries on knots which yield lens spaces and genera of knots , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  S. Boyer Dehn surgery on knots , 1998 .

[14]  Daniel J. Heath,et al.  Essential tangle decomposition from thin position of a link , 1997 .

[15]  C. Gordon Combinatorial methods in Dehn surgery , 1997, math/9704223.

[16]  A. Thompson Thin position and bridge number for knots in the 3-sphere , 1997 .

[17]  M. Teragaito Cyclic surgery on genus one knots , 1997 .

[18]  C. Gordon,et al.  Reducible manifolds and Dehn surgery , 1996 .

[19]  Ying‐Qing Wu The reducibility of surgered 3-manifolds , 1992 .

[20]  J. Berge The knots in D2 × S1 which have nontrivial Dehn surgeries that yield D2 × S1 , 1991 .

[21]  Ying‐Qing Wu Cyclic surgery and satellite knots , 1990 .

[22]  Sergei Matveev,et al.  Complexity theory of three-dimensional manifolds , 1990, Acta Applicandae Mathematicae.

[23]  W. Parry All types implies torsion , 1990 .

[24]  John Luecke,et al.  Knots are determined by their complements , 1989 .

[25]  Shicheng Wang,et al.  Cyclic surgery on knots , 1989 .

[26]  R. Litherland,et al.  Lens spaces and Dehn surgery , 1989 .

[27]  David Gabai,et al.  Foliations and the topology of 3-manifolds , 1987 .

[28]  R. Litherland,et al.  Incompressible planar surfaces in 3-manifolds , 1984 .

[29]  C. Gordon Dehn surgery and satellite knots , 1983 .

[30]  R. Stern,et al.  Constructing lens spaces by surgery on knots , 1980 .

[31]  D. Rolfsen,et al.  An unexpected surgery construction of a lens space. , 1977 .

[32]  L. Moser Elementary surgery along a torus knot. , 1971 .

[33]  W. B. R. Lickorish,et al.  A Representation of Orientable Combinatorial 3-Manifolds , 1962 .

[34]  E. Moise Affine Structures in 3-Manifolds: III. Tubular Neighborhoods of Linear Graphs , 1952 .

[35]  J. Luecke Dehn Surgery on Knots in the 3-Sphere , 1995 .

[36]  Abigail Thompson,et al.  Thin Position and the Recognition Problem for $\bold{S^3}$ , 1994 .

[37]  M. Scharlemann,et al.  Heegaard splittings of (surface) x I are standard , 1993 .

[38]  David Gabai Surgery on knots in solid tori , 1989 .

[39]  J. Cerf Sur les difféomorphismes de la sphère de dimension trois (Γ4 = o) , 1968 .

[40]  J. D. Miller Modifications and cobounding manifolds , 1967 .

[41]  R. Bing An Alternative Proof that 3-Manifolds Can be Triangulated , 1959 .

[42]  Robert Lipshitz,et al.  Algebraic & Geometric Topology , 2023 .