Concrete material science: Past, present, and future innovations

Abstract Concrete is flying off, but it is simultaneously facing tremendous challenges in terms of environmental impact, financial needs, societal acceptance and image. Based on an historical approach of the science of concrete and reinforced concrete in particular, this paper calls for the exploration of radical changes in three key aspects of concrete use: reinforcement, binder content, and implementation methods. More precisely, it is suggested that, in parallel to the introduction of robotic fabrication methods, digital technologies may be key for the introduction several innovations like (i) rebar-free reinforcement using non-convex granular media; (ii) compression-optimized concrete structures, using topology optimization, architectural geometry, and 3D-printing or origami-patterned formworks; (iii) truly digital concrete through the coupling of massive data collection and deep learning.

[1]  Henri Van Damme,et al.  Earth concrete. Stabilization revisited , 2017, Cement and Concrete Research.

[2]  Gilles Chanvillard,et al.  Modelling Elasticity of a Hydrating Cement Paste , 2007 .

[3]  Achim Menges,et al.  Towards an aggregate architecture: designed granular systems as programmable matter in architecture , 2016 .

[4]  Michael Pawlyn,et al.  Biomimicry in Architecture , 2011 .

[5]  Pedro M Reis,et al.  Transforming architectures inspired by origami , 2015, Proceedings of the National Academy of Sciences.

[6]  Hong-Guang Ni,et al.  Prediction of compressive strength of concrete by neural networks , 2000 .

[7]  Luc Nicoleau,et al.  Accelerated growth of calcium silicate hydrates: Experiments and simulations , 2011 .

[8]  F. Stillinger,et al.  Jammed hard-particle packings: From Kepler to Bernal and beyond , 2010, 1008.2982.

[9]  I. Cohen,et al.  Hydrodynamic and Contact Contributions to Continuous Shear Thickening in Colloidal Suspensions. , 2015, Physical review letters.

[10]  T. L. Brownyard,et al.  Studies of the Physical Properties of Hardened Portland Cement Paste , 1946 .

[11]  F. Larrard Concrete Mixture Proportioning: A Scientific Approach , 1999 .

[12]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[13]  P. Termkhajornkit,et al.  Dependence of compressive strength on phase assemblage in cement pastes: Beyond gel–space ratio — Experimental evidence and micromechanical modeling , 2014 .

[14]  Tongbo Sui,et al.  Alternative cement clinkers , 2017, Cement and Concrete Research.

[15]  Livia Chitu,et al.  Oriented aggregation of calcium silicate hydrate platelets by the use of comb-like copolymers , 2013 .

[16]  Michael Grüninger,et al.  Introduction , 2002, CACM.

[17]  R. Rutgers,et al.  Packing of Spheres , 1962, Nature.

[18]  Jianguo Liu,et al.  A looming tragedy of the sand commons , 2017, Science.

[19]  K. Sathiyakumari,et al.  Prediction of the Compressive Strength of High Performance Concrete Mix using Tree Based Modeling , 2010 .

[20]  K. Scrivener,et al.  Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry , 2018, Cement and Concrete Research.

[21]  A. Nonat,et al.  Identification of Binding Peptides on Calcium Silicate Hydrate: A Novel View on Cement Additives , 2014, Advanced materials.

[22]  K. V. Van Vliet,et al.  Combinatorial molecular optimization of cement hydrates , 2014, Nature Communications.

[23]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[24]  Hjh Jos Brouwers,et al.  Mix design and properties assessment of Ultra-High-Performance Fibre Reinforced Concrete (UHPFRC) , 2014 .

[25]  Frank Lloyd Wright,et al.  In the cause of architecture , 1984 .

[26]  Behrokh Khoshnevis,et al.  Innovative Rapid Prototyping Process Makes Large Sized, Smooth Surfaced Complex Shapes in a Wide Variety of Materials , 1998 .

[27]  Roland J.-M. Pellenq,et al.  Physical Origins of Thermal Properties of Cement Paste , 2015 .

[28]  M. Cyr,et al.  Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives , 2000 .

[29]  J. D. BERNAL,et al.  Packing of Spheres: Co-ordination of Randomly Packed Spheres , 1960, Nature.

[30]  Skylar Tibbits,et al.  Jammed architectural structures: towards large-scale reversible construction , 2016 .

[31]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[32]  R. Sharma,et al.  PREDICTING COMPRESSIVE STRENGTH OF CONCRETE FOR VARYING WORKABILITY USING REGRESSION MODELS , 2014 .

[33]  E. Koutsoukos The K-T Boundary , 2005 .

[34]  D. Bonn,et al.  Shear thickening in concentrated suspensions of smooth spheres in Newtonian suspending fluids. , 2018, Soft matter.

[35]  Karola Dierichs,et al.  Structure of hexapod 3D packings: understanding the global stability from the local organization , 2017 .

[36]  Tomaso Aste,et al.  The pursuit of perfect packing , 2000 .

[37]  E. Gallucci,et al.  Morpho-topological investigation of the mechanisms and kinetic regimes of alite dissolution , 2015 .

[38]  G. M. Idorn,et al.  Concrete progress : from antiquity to third millenium , 1997 .

[39]  P. Dove,et al.  Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Robert J. Flatt,et al.  Working mechanisms of water reducers and superplasticizers , 2016 .

[41]  Robert J. Flatt,et al.  Concrete: An eco material that needs to be improved , 2012 .

[42]  Zhengkui Xu,et al.  Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste : Short-range ordering, nanocrystallinity, and local compositional order , 1997 .

[43]  Craig Standing,et al.  Construction industry productivity and the potential for collaborative practice , 2014 .

[44]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[45]  A. Nonat,et al.  Hydrated Layer Formation on Tricalcium and Dicalcium Silicate Surfaces: Experimental Study and Numerical Simulations , 2001 .

[46]  Joachim Bill,et al.  Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials , 2017, Science Advances.

[47]  Konstantin Sobolev,et al.  How Nanotechnology Can Change the Concrete World , 2014 .

[48]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: II. Theory , 1987 .

[49]  R. Flatt,et al.  Yodel: A Yield Stress Model for Suspensions , 2006 .

[50]  I. Stewart Mathematics: Some assembly needed , 2007, Nature.

[51]  Paul M. Goodrum,et al.  Case Studies of U.S. Construction Labor Productivity Trends, 1970-1998 , 2000 .

[52]  Hamlin M. Jennings,et al.  Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement , 2009 .

[53]  F. Gadala-Maria,et al.  Transient normal stress response in a concentrated suspension of spherical particles , 2002 .

[54]  Hajime Okamura,et al.  Self-Compacting Concrete , 2000 .

[55]  Ja Forty A Material Without a History , 2006 .

[56]  Jeffrey J. Thomas,et al.  A New Approach to Modeling the Nucleation and Growth Kinetics of Tricalcium Silicate Hydration , 2007 .

[57]  A. H. M. Andreasen Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten) , 1930 .

[58]  P. Dove,et al.  Kinetics of Mineral Dissolution and Growth as Reciprocal Microscopic Surface Processes Across Chemical Driving Force , 2007 .

[59]  O. Coussy Mechanics and Physics of Porous Solids , 2010 .

[60]  G. D. Scott,et al.  Packing of Spheres: Packing of Equal Spheres , 1960, Nature.

[61]  Jonas Buchli,et al.  Digital in situ fabrication - Challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond , 2018, Cement and Concrete Research.

[62]  Matthew Wells,et al.  Engineers: A History of Engineering and Structural Design , 2010 .

[63]  Frank Huijben,et al.  Vacuumatic formwork: a novel granular manufacturing technique for producing topology-optimised structures in concrete , 2016 .

[64]  S. S. Manna,et al.  Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings , 1991 .

[65]  S. H. A. Chen,et al.  Microstructure Determination of Calcium-Silicate-Hydrate Globules by Small-Angle Neutron Scattering , 2012 .

[66]  T. Salez,et al.  Emergent Strain Stiffening in Interlocked Granular Chains. , 2017, Physical review letters.

[67]  Claus Pade,et al.  The CO2 Uptake of Concrete in a 100 Year Perspective , 2007 .

[68]  A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials , 2001 .

[69]  Gokmen Tayfur,et al.  FUZZY LOGIC MODEL FOR THE PREDICTION OF CEMENT COMPRESSIVE STRENGTH , 2004 .

[70]  C. C. Furnas Grading Aggregates - I. - Mathematical Relations for Beds of Broken Solids of Maximum Density , 1931 .

[71]  Heinrich M Jaeger,et al.  Evolving design rules for the inverse granular packing problem. , 2014, Soft matter.

[72]  André Nonat,et al.  Experimental investigation of calcium silicate hydrate (C-S-H) nucleation , 1999 .

[73]  R. Feret,et al.  Sur la compacite des mortiers hydrauliques (水硬性モルタルの充填性について) , 1892 .

[74]  L. Nicoleau,et al.  Nano-optimized Construction Materials by Nano-seeding and Crystallization Control , 2011 .

[75]  Olivier Pouliquen,et al.  Granular Media: Between Fluid and Solid , 2013 .

[76]  Didier Lootens,et al.  Dilatant flow of concentrated suspensions of rough particles. , 2005, Physical review letters.

[77]  Tomaso Aste,et al.  Relation between grain shape and fractal properties in random Apollonian packing with grain rotation. , 2008, Physical review letters.

[78]  Peter Collins,et al.  Concrete: the vision of a new architecture , 1959 .

[79]  G. Sant,et al.  A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments. , 2015, The Journal of chemical physics.

[80]  Jan Mewis,et al.  Colloidal Suspension Rheology: Preface , 2011 .

[81]  Marc Z. Miskin,et al.  Adapting granular materials through artificial evolution. , 2013, Nature materials.

[82]  R. Pellenq,et al.  Controlling local packing and growth in calcium-silicate-hydrate gels. , 2014, Soft matter.

[83]  Sara Mantellato,et al.  Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry , 2018, Cement and Concrete Research.

[84]  K. Scrivener,et al.  Studying nucleation and growth kinetics of alite hydration using μic , 2009 .

[85]  P. Baglioni,et al.  Cement: a two thousand year old nano-colloid. , 2011, Journal of colloid and interface science.

[86]  E. Lesniewska,et al.  Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[87]  M. R. Andalibi,et al.  On the Mesoscale Mechanism of Synthetic Calcium-Silicate-Hydrate Precipitation: A Population Balance Modeling Approach , 2018 .

[88]  C. D. Wolf,et al.  Impact of Embodied Energy on materials/buildings with partial replacement of ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash , 2018 .

[89]  Kevin Paine,et al.  A comprehensive review of the models on the nanostructure of calcium silicate hydrates , 2015 .

[90]  François Coignet Bétons agglomérés appliqués à l'art de construire : notamment à l'état monolithe , aux constructions agricoles et urbaines, ... et à l'état de pierres artificielles, à la confection de dalles ... , 1861 .

[91]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[92]  Tomohiro Tachi,et al.  Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials , 2015, Proceedings of the National Academy of Sciences.

[93]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[94]  Nicolas Roussel,et al.  Rheological requirements for printable concretes , 2018, Cement and Concrete Research.

[95]  Freek Bos,et al.  Rethinking reinforcement for digital fabrication with concrete , 2018, Cement and Concrete Research.

[96]  H. Manzano,et al.  Precipitation Mechanisms of Mesoporous Nanoparticle Aggregates: Off-Lattice, Coarse-Grained, Kinetic Simulations , 2017 .

[97]  Thaddeus Hyatt Portland-Cement-Concrete, Combined with Iron, As a Building Material, with Reference to Economy of Metal in Construction, and for Security Against Fire in the Making of Roofs, Floors, and Walking Surfaces , 1976 .

[98]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[99]  Marian Eide,et al.  Ultra High Performance Fibre Reinforced Concrete (UHPFRC) – State of the art : FA 2 Competitive constructions : SP 2.2 Ductile high strength concrete , 2012 .

[100]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[101]  D. Frenkel,et al.  The crucial effect of early-stage gelation on the mechanical properties of cement hydrates , 2016, Nature Communications.

[102]  Sean Keller,et al.  Aleatory architectures , 2015, 1510.05721.

[103]  İlker Bekir Topçu,et al.  Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic , 2008 .

[104]  G. Saoût,et al.  Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash , 2011 .

[105]  J. D. Bernal,et al.  Crystallographic research on the hydration of Portland cement. A first report on investigations in progress , 1952 .

[106]  Franz-Josef Ulm,et al.  Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale , 2007 .

[107]  Min-Yuan Cheng,et al.  Prediction of Concrete Compressive Strength from Early Age Test Result Using an Advanced Metaheuristic-Based Machine Learning Technique , 2017 .

[108]  J. Bullard A Determination of Hydration Mechanisms for Tricalcium Silicate Using a Kinetic Cellular Automaton Model , 2008 .

[109]  J. Beaudoin,et al.  Hydration of tricalcium silicate in the presence of synthetic calcium–silicate–hydrate , 2009 .

[110]  J. Rieger,et al.  Formation of nanoparticles and nanostructures--an industrial perspective on CaCO3 , cement, and polymers. , 2014, Angewandte Chemie.

[111]  X. Chateau Particle packing and the rheology of concrete , 2012 .

[112]  Rajendra Kumar Sharma,et al.  Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete , 2018 .

[113]  Lars-Erik Gadde,et al.  The construction industry as a loosely coupled system: implications for productivity and innovation , 2002 .

[114]  Jui-Sheng Chou,et al.  Machine learning in concrete strength simulations: Multi-nation data analytics , 2014 .

[115]  Robert Courland,et al.  Concrete Planet: The Strange and Fascinating Story of the World's Most Common Man-Made Material , 2011 .

[116]  André Nonat,et al.  The di- and tricalcium silicate dissolutions , 2013 .

[117]  Johannes Wallner,et al.  Architectural geometry , 2007, Comput. Graph..

[118]  B. Oh,et al.  Measurement Device and Characteristics of Diffusion Coefficient of Carbon Dioxide in Concrete , 2011 .

[119]  Thierry Sedran,et al.  Mixture-proportioning of high-performance concrete , 2002 .

[120]  Lex Reiter,et al.  The role of early age structural build-up in digital fabrication with concrete , 2018, Cement and Concrete Research.

[121]  R. Geyer,et al.  Production, use, and fate of all plastics ever made , 2017, Science Advances.

[122]  Paul M. Goodrum,et al.  U.S. construction labor productivity trends, 1970-1998 , 2000 .

[123]  Rajshekhar Rao,et al.  Biomimicry in Architecture , 2014 .

[124]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[125]  Robert J. Flatt,et al.  Chemistry of chemical admixtures , 2016 .

[126]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[127]  Carl W. Condit The First Reinforced-Concrete Skyscraper: The Ingalls Building in Cincinnati and Its Place in Structural History , 1968 .

[128]  N. Ouchiyama,et al.  Porosity estimation from particle size distribution , 1986 .

[129]  Achim Menges,et al.  Aggregate Structures: Material and Machine Computation of Designed Granular Substances , 2012 .

[130]  P. Mills,et al.  The fractal concept in the rheology of concentrated suspensions , 1988 .

[131]  J. D. Bernal,et al.  Random Packing of Spheres in Non-rigid Containers , 1967, Nature.

[132]  Eugène Freyssinet,et al.  Un amour sans limite , 1994 .

[133]  Scott Franklin,et al.  Extensional rheology of entangled granular materials , 2014 .

[134]  Tsuyoshi Saito,et al.  Relation between Chemical Composition and Physical Properties of C-S-H Generated from Cementitious Materials , 2015 .

[135]  Bernard Marrey,et al.  Joseph Monier et la naissance du ciment armé , 2001 .

[136]  Szweda Zofia,et al.  Theoretical Model and Experimental Tests on Chloride Diffusion and Migration Processes in Concrete , 2013 .

[137]  Vanderley Moacyr John,et al.  Lower binder intensity eco-efficient concretes , 2013 .

[138]  Falk K. Wittel,et al.  Continuous wire reinforcement for jammed granular architecture , 2015, 1511.05705.

[139]  Christopher Wolverton,et al.  Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments , 2018, Science Advances.

[140]  Caijun Shi,et al.  A review on mixture design methods for self-compacting concrete , 2015 .

[141]  David Arditi,et al.  Productivity improvement in the Indonesian construction industry , 1996 .

[142]  Z. Ha,et al.  Prediction of random packing limit for multimodal particle mixtures , 2002 .

[143]  Antoine Picon Architecture and technology : Two centuries of creative tension , 2006 .

[144]  Arthur Lebée,et al.  From Folds to Structures, a Review , 2015 .

[145]  Antje Strauss,et al.  Corrosion Of Steel In Concrete Understanding Investigation And Repair , 2016 .

[146]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[147]  Abhishek Kumar,et al.  The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate , 2017 .

[148]  E. Altshuler,et al.  Entangled active matter: From cells to ants , 2016 .

[149]  R. Flatt Conclusions and outlook on the future of concrete admixtures , 2016 .

[150]  D. Kilgour,et al.  The density of random close packing of spheres , 1969 .

[151]  Willi Viktor Lauer,et al.  Mesh Mould: Robotically Fabricated Metal Meshes as Concrete Formwork and Reinforcement , 2015 .

[152]  Ammar Yahia,et al.  Self-consolidating concrete , 2016 .

[153]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[154]  Willi Viktor Lauer,et al.  Mesh‐Mould: Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork , 2014 .

[155]  François Chollet,et al.  Deep Learning with Python , 2017 .

[156]  Luc Nicoleau,et al.  New Calcium Silicate Hydrate Network , 2010 .

[157]  R. Peikert,et al.  THE FRACTAL DIMENSION OF THE APOLLONIAN SPHERE PACKING , 1994 .

[158]  Donald E. Macphee,et al.  A physico-chemical basis for novel cementitious binders , 2011 .

[159]  P. Richard,et al.  Composition of reactive powder concretes , 1995 .

[160]  T Sedran,et al.  Optimization of ultra-high-performance concrete by the use of a packing model , 1994 .

[161]  J. Finney Bernal’s road to random packing and the structure of liquids , 2013 .

[162]  K. Kendall,et al.  Flexural strength and porosity of cements , 1981, Nature.

[163]  Nicolas Roussel,et al.  Digital Concrete: Opportunities and Challenges , 2016 .

[164]  R. Farr,et al.  Estimate for the fractal dimension of the Apollonian gasket in d dimensions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  John W. Cahn,et al.  The kinetics of grain boundary nucleated reactions , 1956 .

[166]  Christian Hellmich,et al.  Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model , 2011 .

[167]  H. Damme,et al.  Influence of Fillers on Textural and Mechanical Properties of C3S Pastes , 1998 .

[168]  H. Brouwers,et al.  Particle-size distribution and packing fraction of geometric random packings. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[169]  A. Nonat THE STRUCTURE AND STOICHIOMETRY OF C-S-H , 2004 .

[170]  M. Buehler,et al.  Roadmap across the mesoscale for durable and sustainable cement paste – A bioinspired approach , 2016 .

[171]  P. Levitz,et al.  Mesoscale texture of cement hydrates , 2016, Proceedings of the National Academy of Sciences.

[172]  A. Nonat,et al.  From C–S–H to C–A–S–H: Experimental study and thermodynamic modelling , 2015 .

[173]  J. Buchli,et al.  Mesh Mould: An On Site, Robotically Fabricated, Functional Formwork , 2017 .

[174]  T. C. Powers,et al.  Structure and Physical Properties of Hardened Portland Cement Paste , 1958 .

[175]  Duncan Herfort,et al.  Thermodynamics and cement science , 2011 .

[176]  Skylar Tibbits From Automated to Autonomous Assembly , 2017 .

[177]  Said Kenai,et al.  APPLICATION OF NEW INFORMATION TECHNOLOGY ON CONCRETE: AN OVERVIEW , 2011 .

[178]  Zongjin Li,et al.  Reactive force field simulation on polymerization and hydrolytic reactions in calcium aluminate silicate hydrate (C–A–S–H) gel: structure, dynamics and mechanical properties , 2015 .

[179]  Li Yu,et al.  The wood from the trees: The use of timber in construction , 2017 .

[180]  Türkay Dereli,et al.  Prediction of cement strength using soft computing techniques , 2004 .

[181]  H. Van Damme,et al.  Gelation, Shear-Thinning and Shear-Thickening in Cement Slurries , 2004 .

[182]  van F Frans Herwijnen,et al.  Vacuumatics: vacuumatically prestressed (adaptable) structures , 2008 .

[183]  Luca Bertolini,et al.  Corrosion of Steel in Concrete , 2013 .

[184]  H. Jaeger Celebrating Soft Matter's 10th Anniversary: toward jamming by design. , 2015, Soft matter.

[185]  Philippe Coussot,et al.  Steady state flow of cement suspensions: A micromechanical state of the art , 2010 .

[186]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[187]  P. Coussot Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment , 2005 .

[188]  A. Lasaga,et al.  Variation of Crystal Dissolution Rate Based on a Dissolution Stepwave Model , 2001, Science.

[189]  Jie Zhang,et al.  Nucleation and growth models for hydration of cement , 2012 .

[190]  Scott Franklin,et al.  Geometric cohesion in granular materials , 2012 .

[191]  Olivier Pouliquen,et al.  Granular Media: Granular gases , 2013 .

[192]  Robert J. Flatt,et al.  Dissolution theory applied to the induction period in alite hydration , 2010 .

[193]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[194]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[195]  Ivana Banjad Pečur,et al.  Mix design for self compacting concrete , 2009 .

[196]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[197]  Franz-Josef Ulm,et al.  Nanogranular origin of concrete creep , 2009, Proceedings of the National Academy of Sciences.

[198]  C. C. Furnasz Grading Aggregates I-Mathematical Relations for Beds of Broken Solids of Maximum Density ’ , ’ , 2022 .

[199]  Loïc Bertrand,et al.  Paleo-inspired Systems: Durability, Sustainability, and Remarkable Properties. , 2018, Angewandte Chemie.

[200]  M. A. Bhatti,et al.  Predicting the compressive strength and slump of high strength concrete using neural network , 2006 .

[201]  H. Brouwers,et al.  SELF-COMPACTING CONCRETE: THE ROLE OF THE PARTICLE SIZE DISTRIBUTION , 2005 .

[202]  Arthur Newell Talbot,et al.  THE STRENGTH OF CONCRETE - ITS RELATION TO THE CEMENT, AGGREGATES AND WATER , 1923 .

[203]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments , 1986 .

[204]  R. Behringer,et al.  Packings of 3D stars: stability and structure , 2015, 1511.06026.

[205]  B. Lothenbach,et al.  Thermodynamic modelling of the hydration of Portland cement , 2006 .

[206]  Bruno Luís Damineli,et al.  Measuring the eco-efficiency of cement use , 2010 .

[207]  David Hu,et al.  Mechanics of fire ant aggregations. , 2016, Nature materials.

[208]  C. Vernet,et al.  Ultra-Durable Concretes: Structure at the Micro- and Nanoscale , 2004 .

[209]  Heinrich M. Jaeger,et al.  Freestanding loadbearing structures with Z-shaped particles , 2015, 1510.05716.