Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review

Research on convective heat transfer on internal microtube and microchannel has been extensively conducted in the past decade. This review summarizes numerous researches on two topics; the first section focuses on studying the fluid flow and heat transfer behavior of different types of microtubes (MT) and microchannel (MC) at different orientations. The second section concentrates on nanofluids; its preparation, properties, behavior, and many others. The purpose of this article is to get a clear view and detailed summary of the influence of several parameters such as the geometrical specifications, boundary conditions, and type of fluids. The maximum Nusselt number is the main target of such research where correlation equations were developed in experimental and numerical studies are reported. The heat transfer enhancement of nanofluids along with the nanofluids preparation technique, types and shapes of nanoparticles, base fluids and additives, transport mechanisms, and stability of the suspension are also discussed.

[1]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[2]  Yassin A. Hassan,et al.  Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids , 2008 .

[3]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[4]  Norshah Hafeez Shuaib,et al.  Numerical simulation of heat transfer enhancement in wavy microchannel heat sink , 2011 .

[5]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[6]  F. Sanchez-Sinencio,et al.  Thermal Characterization of Nanofluids with Different Solvents , 2009 .

[7]  Prasanta Kumar Das,et al.  Synthesis and characterization of nanofluid for advanced heat transfer applications , 2006 .

[8]  C. T. Nguyen,et al.  New temperature dependent thermal conductivity data for water-based nanofluids , 2009 .

[9]  M. Izquierdo,et al.  Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger , 2009 .

[10]  S. Yip,et al.  The Classical Nature of Thermal Conduction in Nanofluids , 2008, 0901.0058.

[11]  Rahman Saidur,et al.  Latest developments on the viscosity of nanofluids , 2012 .

[12]  A. Cioabla,et al.  The viscous dissipation effect on heat transfer and fluid flow in micro-tubes , 2010 .

[13]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[14]  Norshah Hafeez Shuaib,et al.  Influence of Nanofluids on Parallel Flow Square Microchannel Heat Exchanger Performance , 2011 .

[15]  J. Thome,et al.  Investigation of saturated critical heat flux in a single, uniformly heated microchannel , 2006 .

[16]  Haitao Hu,et al.  Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube , 2009 .

[17]  J. Chung,et al.  Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel , 2006 .

[18]  M. J. Rightley,et al.  Three-dimensional laminar flow and heat transfer in a parallel array of microchannels etched on a substrate , 2008 .

[19]  D. Misra,et al.  Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture , 2007 .

[20]  S. Garimella,et al.  Investigation of heat transfer in rectangular microchannels , 2005 .

[21]  Roland Baviere,et al.  Bias effects on heat transfer measurements in microchannel flows , 2006 .

[22]  James M. Hill,et al.  Determination of nanolayer thickness for a nanofluid , 2007 .

[23]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[24]  D. Das,et al.  Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). , 2006, Journal of nanoscience and nanotechnology.

[25]  Kai Zhang,et al.  Review of nanofluids for heat transfer applications , 2009 .

[26]  Huiying Wu,et al.  An experimental study of convective heat transfer in silicon microchannels with different surface conditions , 2003 .

[27]  Suresh Sivan,et al.  Limits for thermal conductivity of nanofluids , 2010 .

[28]  Huaqing Xie,et al.  Thermal performance enhancement in nanofluids containing diamond nanoparticles , 2009 .

[29]  J. M. Rub'i,et al.  Heat transfer between nanoparticles: Thermal conductance for near-field interactions , 2008, 0801.1768.

[30]  D. Poulikakos,et al.  Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids: An experimental study , 2011 .

[31]  V. Bianco,et al.  Numerical investigation of nanofluids forced convection in circular tubes , 2009 .

[32]  Jyotirmay Banerjee,et al.  Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model , 2010 .

[33]  J. Thome,et al.  Status of prediction methods for critical heat fluxes in mini and microchannels , 2009 .

[34]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[35]  S. Garimella,et al.  Measurement and modeling of condensation heat transfer in non-circular microchannels , 2010 .

[36]  S. Abdel-Khalik,et al.  An experimental investigation of microchannel flow with internal pressure measurements , 2005 .

[37]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[38]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[39]  Clement Kleinstreuer,et al.  Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids , 2005 .

[40]  Yogendra Joshi,et al.  Experimental and numerical study of sidewall profile effects on flow and heat transfer inside microchannels , 2007 .

[41]  Y. Kato,et al.  Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles , 2007 .

[42]  S. Garimella,et al.  Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays , 2008 .

[43]  Nicolas Galanis,et al.  Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids , 2007 .

[44]  A. Behzadmehr,et al.  A new model for calculating the effective viscosity of nanofluids , 2009 .

[45]  E. Saeedi,et al.  Developing slip-flow and heat transfer in trapezoidal microchannels , 2008 .

[46]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[47]  Sarit K. Das,et al.  Model for thermal conductivity of CNT-nanofluids , 2008 .

[48]  Rahman Saidur,et al.  Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger , 2011 .

[49]  Y. Wang,et al.  Influence of three-dimensional wall roughness on the laminar flow in microtube , 2007 .

[50]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[51]  R. Wu,et al.  Visualization study of steam condensation in triangular microchannels , 2009 .

[52]  F. He,et al.  Transitional and turbulent flow in a circular microtube , 2007 .

[53]  Cen Ke-fa,et al.  Dependence of Nanofluid Viscosity on Particle Size and pH Value , 2009 .

[54]  G. Croce,et al.  Numerical analysis of roughness effect on microtube heat transfer , 2004 .

[55]  Hongwei Xie,et al.  Thermal Conductivity of Suspensions Containing Nanosized SiC Particles , 2002 .

[56]  Sarit K. Das,et al.  Effect of particle size on the convective heat transfer in nanofluid in the developing region , 2009 .

[57]  W. Tao,et al.  Experimental and numerical studies of liquid flow and heat transfer in microtubes , 2007 .

[58]  Suresh V. Garimella,et al.  Microchannel size effects on local flow boiling heat transfer to a dielectric fluid , 2008 .

[59]  John T. Wen,et al.  Analysis and active control of pressure-drop flow instabilities in boiling microchannel systems , 2010 .

[60]  Satish G. Kandlikar,et al.  Single-Phase Liquid Friction Factors in Microchannels , 2006 .

[61]  Gian Piero Celata,et al.  Microtube liquid single-phase heat transfer in laminar flow , 2006 .

[62]  M. Takei,et al.  Experimental study on forced convective heat transfer characteristics in quartz microtube , 2007 .

[63]  D. Das,et al.  Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids , 2010 .

[64]  L. Xu,et al.  Flow boiling of liquid nitrogen in micro-tubes: Part I – The onset of nucleate boiling, two-phase flow instability and two-phase flow pressure drop , 2007 .

[65]  C. T. Nguyen,et al.  Heat transfer behaviours of nanofluids in a uniformly heated tube , 2004 .

[66]  S. Paras,et al.  INVESTIGATING THE EFFICACY OF NANOFLUIDS AS COOLANTS IN PLATE HEAT EXCHANGERS (PHE) , 2009 .

[67]  Dong Liu,et al.  Single-Phase Thermal Transport of Nanofluids in a Minichannel , 2011 .

[68]  Yulong Ding,et al.  Particle migration in a flow of nanoparticle suspensions , 2005 .

[69]  O. N. Şara,et al.  PRESSURE DROP AND POINT MASS TRANSFER IN A RECTANGULAR MICROCHANNEL , 2009 .

[70]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method , 2006 .

[71]  Slip-flow and heat transfer of gaseous flows in the entrance of a wavy microchannel , 2010 .

[72]  Kirk L. Yerkes,et al.  Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid , 2010 .

[73]  C. T. Nguyen,et al.  Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon , 2007 .

[74]  D. Das,et al.  Experimental determination of thermal conductivity of three nanofluids and development of new correlations , 2009 .

[75]  Chunqing Tan,et al.  Rheological behaviour of nanofluids , 2007 .

[76]  M. Corcione Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls , 2010 .

[77]  W. Tseng,et al.  Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions , 2003 .

[78]  Yongping Chen,et al.  Visualization study of steam condensation in wide rectangular silicon microchannels , 2010 .

[79]  S. Saha,et al.  Heat transfer characteristics of flow boiling in a single horizontal microchannel , 2010 .

[80]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[81]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[82]  Ali Koşar,et al.  Effect of substrate thickness and material on heat transfer in microchannel heat sinks , 2010 .

[83]  M. Kim,et al.  Flow pattern transition instability during flow boiling in a single microchannel , 2007 .

[84]  K. Goodson,et al.  Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method , 2008 .

[85]  D. Banerjee,et al.  Enhanced specific heat of silica nanofluid , 2011 .

[86]  A. Behzadmehr,et al.  Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube , 2008 .

[87]  P. Cheng,et al.  Determination of annular condensation heat transfer coefficient of steam in microchannels with trapezoidal cross sections , 2010 .

[88]  Anthony J. Walton,et al.  Experimental investigation of non-uniform heating effect on flow boiling instabilities in a microchannel-based heat sink , 2009 .

[89]  Huaqing Xie,et al.  Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid , 2009 .

[90]  W. Tseng,et al.  Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions , 2003 .

[91]  Jl L. Xu,et al.  Flow and heat transfer in microchannels with rough wall surface , 2006 .

[92]  Amin Behzadmehr,et al.  Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach , 2007 .

[93]  Eiyad Abu-Nada,et al.  Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection , 2009 .

[94]  K. Goodson,et al.  Influence of film thickness and cross-sectional geometry on hydrophilic microchannel condensation , 2010 .

[95]  Chengbin Zhang,et al.  Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks , 2009 .

[96]  G. Gamrat,et al.  Modelling of roughness effects on heat transfer in thermally fully-developed laminar flows through microchannels , 2009 .

[97]  Saeed Zeinali Heris,et al.  Heat transfer enhancement by application of nano-powder , 2010 .

[98]  Peng Zhang,et al.  Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies ☆ , 2009 .

[99]  Daniel Attinger,et al.  Can segmented flow enhance heat transfer in microchannel heat sinks , 2010 .

[100]  Chien-Yuh Yang,et al.  Heat transfer characteristics of water flow in microtubes , 2007 .

[101]  K. Sefiane,et al.  Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel , 2009 .

[102]  Yue-Tzu Yang,et al.  Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system , 2010 .

[103]  Xing Zhang,et al.  Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles , 2006 .

[104]  Brahim Bourouga,et al.  Fluid flow and convective heat transfer in flat microchannels , 2009 .

[105]  Suresh V. Garimella,et al.  Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels , 2009 .

[106]  Saeed Alem Varzane Esfehani,et al.  Second law analysis of nanofluid flow , 2011 .

[107]  A. Elkamel,et al.  A model of nanofluids effective thermal conductivity based on dimensionless groups , 2009 .

[108]  D. Das,et al.  Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties , 2009 .

[109]  A. Megahed Experimental investigation of flow boiling characteristics in a cross-linked microchannel heat sink , 2011 .

[110]  C. Choi,et al.  Soret and Dufour effects on convective instabilities in binary nanofluids for absorption application , 2007 .

[111]  S. Wongwises,et al.  An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime , 2010 .

[112]  Huaqing Xie,et al.  Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements , 2010, Nanoscale research letters.

[113]  K. Lee,et al.  Enhancement of thermal conductivity of ethylene glycol based silver nanofluids , 2011 .

[114]  Sarit K. Das Nanofluids—The Cooling Medium of the Future , 2006 .

[115]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[116]  R. Prasher,et al.  Thermal conductance of nanofluids: is the controversy over? , 2008 .

[117]  C. T. Nguyen,et al.  Viscosity data for Al2O3-Water nanofluid - Hysteresis : is heat transfer enhancement using nanofluids reliable? , 2008 .

[118]  W. Tao,et al.  Experimental study of compressibility, roughness and rarefaction influences on microchannel flow , 2007 .

[119]  Haisheng Chen,et al.  Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology , 2009 .

[120]  B. Palm,et al.  Evaporative heat transfer in vertical circular microchannels , 2004 .

[121]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[122]  A. Q. Zade,et al.  Heat transfer characteristics of developing gaseous slip―flow in rectangular microchannels with variable physical properties , 2011 .

[123]  J. Cooper-White,et al.  Experimental and analytical study of the effect of contact angle on liquid convective heat transfer in microchannels , 2006 .

[124]  Boming Yu,et al.  The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles , 2007 .

[125]  Yujin Hwang,et al.  Thermal conductivity and lubrication characteristics of nanofluids , 2006 .

[126]  D. Cahill,et al.  Thermal conductivity of nanoparticle suspensions , 2006 .

[127]  Nam-Trung Nguyen,et al.  Investigation of active interface control of pressure driven two-fluid flow in microchannels , 2007 .

[128]  P. K. Das,et al.  Effect of Particle Size on Thermal Conductivity of Nanofluid , 2008 .

[129]  Thirumalachari Sundararajan,et al.  An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids , 2010 .

[130]  Haisheng Chen,et al.  Rheological behaviour of nanofluids containing tube / rod-like nanoparticles , 2009 .

[131]  Jacob Fish,et al.  Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids , 2008 .

[132]  G. Peterson,et al.  Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3∕Water Nanofluids , 2008 .

[133]  Jürgen Schmidt,et al.  Experimental investigation of transient boiling heat transfer in microchannels , 2007 .

[134]  Jiang Liu,et al.  Numerical study of fluid flow and heat transfer in microchannel cooling passages , 2007 .

[135]  Hamid Reza Seyf,et al.  Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks , 2012 .

[136]  M. M. Rahman,et al.  Heat transfer in rectangular microchannels during volumetric heating of the substrate , 2007 .

[137]  Wang Xianju,et al.  Influence of pH on Nanofluids' Viscosity and Thermal Conductivity , 2009 .

[138]  Wei Li,et al.  Correlations for saturated critical heat flux in microchannels , 2011 .

[139]  John R. Thome,et al.  A theoretical model for the prediction of the critical heat flux in heated microchannels , 2008 .

[140]  J. Chung,et al.  A new model for three-dimensional random roughness effect on friction factor and heat transfer in microtubes , 2010 .

[141]  S. McPhail,et al.  Experimental study on compressible flow in microtubes , 2007 .

[142]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[143]  Metin Renksizbulut,et al.  Slip-flow and heat transfer in rectangular microchannels with constant wall temperature , 2006 .

[144]  V. Vasu,et al.  Heat transfer with nanofluids for electronic cooling , 2009 .

[145]  I. Tavman,et al.  Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids , 2009 .

[146]  Shuo Yang,et al.  Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids , 2009 .

[147]  Michael W. Collins,et al.  Single-phase heat transfer in microchannels The importance of scaling effects , 2009 .

[148]  Saghar Hosseini,et al.  Notice of RetractionEffect of temperature increasing on nanofluid structure , 2010, 2010 2nd International Conference on Computer Engineering and Technology.

[149]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[150]  P. Cheng,et al.  Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels , 2008 .

[151]  Norshah Hafeez Shuaib,et al.  Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink , 2011 .

[152]  A. Aziz,et al.  Thermally developing microtube gas flow with axial conduction and viscous dissipation , 2011 .

[153]  D. Lelea Effects of temperature dependent thermal conductivity on Nu number behavior in micro-tubes , 2010 .

[154]  Jeff Punch,et al.  Friction factor and heat transfer in multiple microchannels with uniform flow distribution , 2008 .

[155]  P. Keblinski Thermal Conductivity of Nanofluids , 2009 .

[156]  Guoliang Ding,et al.  The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture , 2009 .

[157]  Li Yu-hua,et al.  Temperature dependence of thermal conductivity of nanofluids , 2008 .

[158]  Madhusree Kole,et al.  Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant , 2010 .

[159]  A. Moghadassi,et al.  A new dimensionless group model for determining the viscosity of nanofluids , 2010 .

[160]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[161]  Jung-Yeul Jung,et al.  Forced convective heat transfer of nanofluids in microchannels , 2009 .

[162]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[163]  A. Satapathy Slip flow heat transfer in an infinite microtube with axial conduction , 2010 .

[164]  C. T. Nguyen,et al.  Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system , 2007 .

[165]  P. Cheng,et al.  An experimental study of flow boiling instability in a single microchannel , 2008 .

[166]  Heat transfer characteristics of gaseous flows in microtube with constant heat flux , 2008 .

[167]  K. Leong,et al.  A model for the thermal conductivity of nanofluids – the effect of interfacial layer , 2006 .

[168]  W. Tao,et al.  Numerical studies of simultaneously developing laminar flow and heat transfer in microtubes with thick wall and constant outside wall temperature , 2010 .

[169]  Huaqing Xie,et al.  Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture , 2005 .

[170]  Q. Liao,et al.  Heat transfer for laminar slip flow in a microchannel of arbitrary cross section with complex thermal boundary conditions , 2006 .

[171]  Simon R. Phillpot,et al.  Effect of liquid layering at the liquid–solid interface on thermal transport , 2004 .

[172]  K. Wong,et al.  Transport properties of alumina nanofluids , 2008, Nanotechnology.

[173]  Boming Yu,et al.  CORRIGENDUM: A new model for heat conduction of nanofluids based on fractal distributions of nanopar , 2008 .

[174]  M. Shams,et al.  Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime , 2009 .

[175]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol-titanate nanotube nanofluids , 2009 .

[176]  David S. Smith,et al.  Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids , 2010, Nanotechnology.

[177]  O. N. Şara,et al.  Experimental study of laminar forced convective mass transfer and pressure drop in microtubes , 2009 .

[178]  Fei Ai,et al.  Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid , 2002 .

[179]  J. Koo,et al.  Viscous dissipation effects in microtubes and microchannels , 2004 .

[180]  B. Raj,et al.  Effect of clustering on the thermal conductivity of nanofluids , 2008 .

[181]  Ali J. Chamkha,et al.  Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–Water nanofluid , 2010 .

[182]  N. Cheng,et al.  Exponential formula for computing effective viscosity. , 2003 .

[183]  G. P. Peterson,et al.  Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2007 .

[184]  Shigefumi Nishio,et al.  The experimental research on microtube heat transfer and fluid flow of distilled water , 2004 .

[185]  Reza Kamali,et al.  Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids , 2010 .

[186]  Young-Chull Ahn,et al.  Production and dispersion stability of nanoparticles in nanofluids , 2008 .

[187]  C. Choi,et al.  Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants , 2008 .

[188]  Yanhui Yuan,et al.  The effect of particle size on the thermal conductivity of alumina nanofluids , 2009 .

[189]  C. Shu,et al.  Fluid flow and heat transfer in wavy microchannels , 2010 .

[190]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[191]  Boming Yu,et al.  A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles , 2006 .

[192]  Hussein A. Mohammed,et al.  Heat transfer enhancement of nanofluids flow in microtube with constant heat flux , 2012 .

[193]  T. Ameel,et al.  Microtube Gas Flows With Second-Order Slip Flow and Temperature Jump Boundary Conditions , 2009 .

[194]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[195]  Ruzhu Wang,et al.  Flow boiling of liquid nitrogen in micro-tubes: Part II – Heat transfer characteristics and critical heat flux , 2007 .

[196]  M. M. Rahman,et al.  Convective heat transfer in a composite trapezoidal microchannel during magnetic heating , 2010 .

[197]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[198]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[199]  Chiu Han-Chieh,et al.  The heat transfer characteristics of liquid cooling heatsink containing microchannels , 2011 .

[200]  Somchai Wongwises,et al.  Enhancement of heat transfer using nanofluids—An overview , 2010 .

[201]  P. Ben-Abdallah Heat transfer through near-field interactions in nanofluids , 2006, 0801.3728.