Improved kernel of nitrogen isotherms for γ-alumina characterization

[1]  D. Azevedo,et al.  Representative Pores: An Efficient Method to Characterize Activated Carbons , 2021, Frontiers in Chemistry.

[2]  M. Bastos-Neto,et al.  Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons , 2018, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[3]  B. Coasne,et al.  Adsorption on alumina nanopores with conical shape. , 2018, Nanoscale.

[4]  Katie A. Cychosz,et al.  Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials , 2018, Engineering.

[5]  D. Azevedo,et al.  Insights on the mechanisms of H2S retention at low concentration on impregnated carbons , 2018 .

[6]  M. Yamamoto,et al.  Alpha-Alumina Synthesis , 2018 .

[7]  R. López,et al.  Characterization of nanostructured carbon CMK-3 by means of Monte Carlo simulations , 2017 .

[8]  M. Saeed,et al.  Characterization of γ- Al2O3 nanopowders synthesized by co-precipitation method , 2017 .

[9]  K. Cychosz,et al.  Recent advances in the textural characterization of hierarchically structured nanoporous materials. , 2017, Chemical Society reviews.

[10]  R. Snurr,et al.  RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials , 2016 .

[11]  J. Jagiello,et al.  Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2 , 2015 .

[12]  Poomiwat Phadungbut,et al.  Adsorption on ordered and disordered duplex layers of porous anodic alumina. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[13]  K. Cychosz,et al.  Physical adsorption characterization of nanoporous materials: progress and challenges , 2014, Adsorption.

[14]  P. G. Mileo,et al.  Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials , 2013 .

[15]  O. Saber Novel self assembly behavior for γ-alumina nanoparticles , 2012 .

[16]  O. Terasaki,et al.  Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching , 2012, Science.

[17]  Alexander V. Neimark,et al.  Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption , 2012 .

[18]  R. Snurr,et al.  Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization , 2008 .

[19]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[20]  D. Brandon,et al.  Metastable alumina polymorphs : Crystal structures and transition sequences , 2005 .

[21]  Suwen Liu,et al.  Synthesis of novel nanostructured γ-Al2O3 by pyrolysis of aluminiumoxyhydride–HAlO , 2003 .

[22]  V. Varadan,et al.  A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area , 2003 .

[23]  A. Neimark,et al.  Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms† , 2000 .

[24]  N. Seaton,et al.  Development and Validation of Pore Structure Models for Adsorption in Activated Carbons , 1999 .

[25]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[26]  E. Bottani,et al.  Gas-Solid Potentials for N2, O2, and CO2 Adsorbed on Graphite, Amorphous Carbons, Al2O3, and TiO2 , 1995 .

[27]  R. Newnham,et al.  Refinement of theαAl2O3, Ti2O3, V2O3and Cr2O3structures* , 1962 .

[28]  E. Verwey The Structure of the electrolytical oxide Layer on Aluminium , 1935 .

[29]  C. H. Bartholomew,et al.  Facile solvent-deficient synthesis of mesoporous γ-alumina with controlled pore structures , 2013 .

[30]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[31]  J. Čejka,et al.  Nitrogen adsorption study of organised mesoporous alumina , 2001 .