Range characterizations and Singular Value Decomposition of the geodesic X-ray transform on disks of constant curvature

For a one-parameter family of simple metrics of constant curvature ($4\kappa$ for $\kappa\in (-1,1)$) on the unit disk $M$, we first make explicit the Pestov-Uhlmann range characterization of the geodesic X-ray transform, by constructing a basis of functions making up its range and co-kernel. Such a range characterization also translates into moment conditions {\it a la} Helgason-Ludwig or Gel'fand-Graev. We then derive an explicit Singular Value Decomposition for the geodesic X-ray transform. Computations dictate a specific choice of weighted $L^2-L^2$ setting which is equivalent to the $L^2(M, dVol_\kappa)\to L^2(\partial_+ SM, d\Sigma^2)$ one for any $\kappa\in (-1,1)$.

[1]  G. Uhlmann,et al.  The geodesic X-ray transform with fold caustics , 2010, 1004.1007.

[2]  Andreas Rieder,et al.  Incomplete data problems in X-ray computerized tomography , 1989 .

[3]  Joonas Ilmavirta,et al.  4. Integral geometry on manifolds with boundary and applications , 2018, The Radon Transform.

[4]  Donald Ludwig,et al.  The radon transform on euclidean space , 2010 .

[5]  F. Monard,et al.  Efficient tensor tomography in fan-beam coordinates , 2015, 1510.05132.

[6]  Sean F. Holman,et al.  The attenuated geodesic x-ray transform , 2017, 1708.08973.

[7]  G. Uhlmann,et al.  The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points , 2014, 1402.5559.

[8]  A K Louis,et al.  A novel filter design technique in 2D computerized tomography , 1996 .

[9]  C. Stolk The Radon transform , 2014 .

[10]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[11]  E. T. Quinto Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform , 1983 .

[12]  R. Marr,et al.  On the reconstruction of a function on a circular domain from a sampling of its line integrals , 1974 .

[13]  S. G. Kazantsev,et al.  Singular value decomposition for the 2D fan-beam Radon transform of tensor fields , 2004 .

[14]  A. Cormack,et al.  The Radon transform on a family of curves in the plane. II , 1981 .

[15]  Alfred K. Louis,et al.  Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography , 2011 .

[16]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[17]  Peter Maass,et al.  The interior Radon transform , 1992 .

[18]  G. Uhlmann,et al.  On characterization of the range and inversion formulas for the geodesic X-ray transform , 2004 .

[19]  Peter Maass,et al.  The x-ray transform: singular value decomposition and resolution , 1987 .

[20]  P. Maass Singular value decompositions for Radon transforms , 1991 .

[21]  Alfred K. Louis Orthogonal Function Series Expansions and the Null Space of the Radon Transform , 1984 .

[22]  On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform , 2010 .

[23]  Alfred K. Louis,et al.  Series Expansions of the Reconstruction Kernel of the Radon Transform over a Cormack-Type Family of Curves with Applications in Tomography , 2014, SIAM J. Imaging Sci..

[24]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .