Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder

The technology of length-alterable line-scanning laser sintering was introduced. Based on the research of laser heating property, powder thermal physics parameters and laser sintering process, a numerical model of the temperature field during length-alterable line-scanning and laser sintering of polymer-coated molybdenum powder was presented. Finite element method (FEM) was used to simulate the temperature field during laser sintering process. In order to verify the simulated results, a measuring system was developed to study the laser sintering temperature field. Infrared meter was introduced to measure the surface temperature of sintering powder; the temperature of its inside part was measured by thermocouple. The measured results were compared with the numerical simulation results; the conformity between them is good and the relative error is less than 5%.