High-pressure and high-temperature multianvil synthesis of metastable polymorphs ofBi2O3: Crystal structure and electronic properties
暂无分享,去创建一个
M. Jansen | R. Dinnebier | U. Wedig | D. Prasad | A. Senyshyn | T. Locherer | S. Ghedia
[1] G. Henkelman,et al. A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[2] F. Porsch,et al. Shear induced phase transition in PbO under high pressure , 2007 .
[3] R. Gilles,et al. Scientific Review: The Structure Powder Diffractometer SPODI , 2007 .
[4] I. Brown. On measuring the size of distortions in coordination polyhedra. , 2006, Acta crystallographica. Section B, Structural science.
[5] A. Walsh,et al. Electronic structure of the alpha and delta phases of Bi2O3: A combined ab initio and x-ray spectroscopy study , 2006 .
[6] K. Syassen,et al. Structural properties, infrared reflectivity, and Raman modes of SnO at high pressure , 2004 .
[7] H. Beck,et al. Ab initio investigations of TlI-type compounds under high pressure , 2004 .
[8] M. Jansen,et al. Pressure-temperature phase diagram of SeO2. Characterization of new phases , 2004 .
[9] M. Jansen,et al. Bulk moduli and high-pressure crystal structures of minium, Pb3O4, determined by X-ray powder diffraction , 2003 .
[10] P. Cortona,et al. An ab-initio study of the rôle of lone pairs in the structure and insulator–metal transition in SnO and PbO , 2002 .
[11] B. Frit,et al. KTe3O6F: a new layer TeO2 structure, stuffed with KF units , 2002 .
[12] Stefan Carlson,et al. TlF and PbO under High Pressure: Unexpected Persistence of the Stereochemically Active Electron Pair This work was supported by the Swedish National Science Research Council (NFR) and the Göran Gustafsson Foundation. , 2001, Angewandte Chemie.
[13] V. Orlov,et al. Structural studies of α-Bi2O3 by neutron powder diffraction , 2001, Powder Diffraction.
[14] T. Merle-Méjean,et al. Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: γ-TeO2 , 2000 .
[15] A. Coelho. Whole-profile structure solution from powder diffraction data using simulated annealing , 2000 .
[16] S. Desgreniers,et al. Bi2O3 under hydrostatic pressure : observation of a pressure-induced amorphization , 1999 .
[17] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[18] E. Makovicky,et al. New measure of distortion for coordination polyhedra , 1998 .
[19] H. Faqir,et al. A new high-pressure phase of bismuth oxide , 1998 .
[20] M. Prudenziati,et al. Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3 , 1997, Powder Diffraction.
[21] R. D. Groot,et al. The electronic structure of the mixed valence compound Pb3O4 , 1997 .
[22] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[23] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[24] I. Vicković,et al. IVTON– a program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications , 1996 .
[25] E. Makovicky,et al. Determination of the centroid or `the best centre' of a coordination polyhedron , 1996 .
[26] G. Tendeloo,et al. In situ study of the phase transition in Bi2Ti4O11 , 1995 .
[27] P. Blöchl. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[28] W. Pitschke,et al. Incorporation of microabsorption corrections into Rietveid analysis , 1993, Powder Diffraction.
[29] Adams,et al. Second-order phase transition in PbO and SnO at high pressure: Implications for the litharge-massicot phase transformation. , 1992, Physical review. B, Condensed matter.
[30] Andreas Savin,et al. Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .
[31] H. Schnering,et al. Die Elektronenlokalisierung in den Festkörper‐strukturen der Elemente: die Diamantstruktur , 1992 .
[32] M. Jansen,et al. Ag25Bi3O18, eine potentiell valenzinstabile BiIII/BiV‐Verbindung , 1991 .
[33] Armel Le Bail,et al. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .
[34] F. Théobald,et al. The lone pair concept and the conductivity of bismuth oxides Bi2O3 , 1986 .
[35] H. A. Harwig. On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase , 1978 .
[36] I. Brown. Bond valence as an aid to understanding the stereochemistry of O and F complexes of Sn(II), Sb(III), Te(IV), I(V) and Xe(VI) , 1974 .
[37] W. H. Baur. The geometry of polyhedral distortions. Predictive relationships for the phosphate group , 1974 .
[38] G. V. Gibbs,et al. Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra , 1971, Science.
[39] H. Rietveld. A profile refinement method for nuclear and magnetic structures , 1969 .
[40] J. Cline,et al. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers. , 2004, Journal of research of the National Institute of Standards and Technology.
[41] B. Raveau,et al. A lead molybdenum(V) monophosphate with a tunnel structure: Pb3(MoO)3(PO4)5 , 2002 .
[42] Peter Day,et al. Mixed Valence Chemistry-A Survey and Classification , 1968 .
[43] L. G. Sillén. On the Crystal Structure of Monoclinic a-Bi2O3 , 1941 .
[44] A. A. Coelho. Applied Crystallography Indexing of Powder Diffraction Patterns by Iterative Use of Singular Value Decomposition , 2022 .