Eulerian Calculus for the Contraction in the Wasserstein Distance
暂无分享,去创建一个
[1] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[2] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[3] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[4] T. O’Neil. Geometric Measure Theory , 2002 .
[5] C. Villani,et al. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .
[6] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[7] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[8] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[9] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[10] M. Giaquinta. Cartesian currents in the calculus of variations , 1983 .
[11] Djalil CHAFAÏ,et al. Sur les in'egalit'es de Sobolev logarithmiques , 2000 .
[12] I. Holopainen. Riemannian Geometry , 1927, Nature.
[13] Karl-Theodor Sturm,et al. Convex functionals of probability measures and nonlinear diffusions on manifolds , 2005 .
[14] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[15] C. Villani. Topics in Optimal Transportation , 2003 .
[16] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[17] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .