Eulerian Calculus for the Contraction in the Wasserstein Distance

We consider the porous medium equation on a compact Riemannian manifold and give a new proof of the contraction of its semigroup in the Wasserstein distance. This proof is based on the insight that the porous medium equation does not increase the size of infinitesimal perturbations along gradient flow trajectories and on an Eulerian formulation for the Wasserstein distance using smooth curves. Our approach avoids the existence result for optimal transport maps on Riemannian manifolds.

[1]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[2]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[3]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[4]  T. O’Neil Geometric Measure Theory , 2002 .

[5]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[6]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[7]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[8]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[9]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[10]  M. Giaquinta Cartesian currents in the calculus of variations , 1983 .

[11]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[12]  I. Holopainen Riemannian Geometry , 1927, Nature.

[13]  Karl-Theodor Sturm,et al.  Convex functionals of probability measures and nonlinear diffusions on manifolds , 2005 .

[14]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[15]  C. Villani Topics in Optimal Transportation , 2003 .

[16]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[17]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .