Semi-abelian monadic categories

We characterize semi-abelian monadic categories and their localizations. These results are then used to obtain a characterization of pointed protomodular quasimonadic categories, and in particular of protomodular quasivarieties.

[1]  Enrico Vitale,et al.  On the abstract characterization of quasi-varieties , 2000 .

[2]  J. Rosický,et al.  Localizations of varieties and quasivarieties , 2000 .

[3]  J. Dixmier Les C*-algèbres et leurs représentations .. , 1964 .

[4]  Walter Felscher,et al.  Kennzeichnung von primitiven und quasiprimitiven Kategorien von Algebren , 1968 .

[5]  W. Tholen,et al.  Semi-abelian categories , 2002 .

[6]  A. Ursini On subtractive varieties, I , 1994 .

[7]  E. Manes Algebraic Theories in a Category , 1976 .

[8]  E. Vitale Localizations of algebraic categories - II , 1998 .

[9]  G. Janelidze,et al.  CHARACTERIZATION OF PROTOMODULAR VARIETIES OF UNIVERSAL ALGEBRAS , 2003 .

[10]  G. M. Kelly,et al.  Some remarks on Maltsev and Goursat categories , 1993, Appl. Categorical Struct..

[11]  D. Bourn Normalization equivalence, kernel equivalence and affine categories , 1991 .

[12]  Theo Buehler,et al.  Exact Categories , 2008, 0811.1480.

[13]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Bourn Normal Subobjects and Abelian Objects in Protomodular Categories , 2000 .

[15]  Jiří Rosický,et al.  On the equational theory ofC*-algebras , 1993 .

[16]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[17]  Joan W Negrepontis Duality in analysis from the point of view of triples , 1971 .

[18]  D. Bourn 3 × 3 Lemma and Protomodularity , 2001 .