369 Tflop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

We present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dualcore microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementation of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. We demonstrate an initial target application, the jetting and ejection of material from a shocked surface.

[1]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[2]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[3]  William G. Hoover,et al.  Nonequilibrium Molecular Dynamics , 1983 .

[4]  C. Brooks Computer simulation of liquids , 1989 .

[5]  Mansour,et al.  Quantitative comparison of molecular dynamics with hydrodynamics in Rayleigh-Bénard convection. , 1989, Physical review. A, General physics.

[6]  D. M. Beazley,et al.  50 GFlops molecular dynamics on the Connection Machine 5 , 1993, Supercomputing '93.

[7]  David M. Beazley,et al.  Message-Passing Multi-Cell Molecular Dynamics on the Connection Machine 5 , 1994, Parallel Comput..

[8]  TAKASHI AMISAKI,et al.  Error evaluation in the design of a special‐purpose processor that calculates nonbonded forces in molecular dynamics simulations , 1995, J. Comput. Chem..

[9]  Holian,et al.  Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations , 1998, Science.

[10]  David M. Beazley,et al.  Avalon: an Alpha/Linux cluster achieves 10 Gflops for $15k , 1998, SC '98.

[11]  Preston,et al.  Large-scale molecular dynamics simulations of dislocation intersection in copper , 1998, Science.

[12]  U. Landman,et al.  Formation, stability, and breakup of nanojets , 2000, Science.

[13]  T. Germann,et al.  Microscopic View of Structural Phase Transitions Induced by Shock Waves , 2002, Science.

[14]  Brad Lee Holian,et al.  Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Brad Lee Holian,et al.  Large‐Scale Molecular Dynamics Simulations of Ejecta Formation in Copper , 2004 .

[16]  William Kramer,et al.  Proceedings of the 2005 ACM/IEEE conference on Supercomputing , 2005 .

[17]  Martin C. Herbordt,et al.  Accelerating molecular dynamics simulations with configurable circuits , 2005, International Conference on Field Programmable Logic and Applications, 2005..

[18]  Peter S. Lomdahl,et al.  25 Tflop/s Multibillion-atom Molecular Dynamics Simulations and Visualization/analysis on Bluegene/l , 2005 .

[19]  John A. Gunnels,et al.  100 + TFlop Solidification Simulations on BlueGene / L , 2005 .

[20]  Peter S. Lomdahl,et al.  MOLECULAR DYNAMICS COMES OF AGE: 320 BILLION ATOM SIMULATION ON BlueGene/L , 2006 .

[21]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[22]  C. Macken,et al.  Mitigation strategies for pandemic influenza in the United States. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Ryutaro Himeno,et al.  A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3 , 2006, SC.

[24]  Brad Lee Holian,et al.  Shock waves in polycrystalline iron. , 2007, Physical review letters.

[25]  John A. Gunnels,et al.  Extending stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[26]  William T. Buttler,et al.  Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces , 2007 .

[27]  E. Villermaux,et al.  Physics of liquid jets , 2008 .