Transposon delivery for CRISPR-based loss-of-function screen in mice identifies NF2 as a cooperating gene involved with the canonical WNT signaling molecular class of hepatocellular carcinoma

[1]  M. Gossen,et al.  Sleeping Beauty transposon system for GDNF overexpression of entrapped stem cells in fibrin hydrogel in a rat model of Parkinson’s disease , 2023, Drug Delivery and Translational Research.

[2]  M. Gossen,et al.  Transposon‐mediated glial cell line‐derived neurotrophic factor overexpression in human adipose tissue‐derived mesenchymal stromal cells: A potential approach for neuroregenerative medicine? , 2022, Journal of tissue engineering and regenerative medicine.

[3]  C. Moylan,et al.  Dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes hepatobiliary carcinogenesis in non-alcoholic fatty liver disease. , 2021, Journal of hepatology.

[4]  I. Sheen,et al.  The Role of Endoglin in Hepatocellular Carcinoma , 2021, International journal of molecular sciences.

[5]  D. Spierings,et al.  Loss of NF2 defines a genetic subgroup of non‐FOS‐rearranged osteoblastoma , 2020, The journal of pathology. Clinical research.

[6]  T. Han,et al.  The CREB-binding protein inhibitor ICG-001: a promising therapeutic strategy in sporadic meningioma with NF2 mutations , 2020, Neuro-oncology advances.

[7]  M. Goumans,et al.  Endoglin: Beyond the Endothelium , 2020, Biomolecules.

[8]  A. Heimberger,et al.  Genetic and immune profiling for potential therapeutic targets in adult human craniopharyngioma , 2019, Clinical oncology and research.

[9]  N. Copeland,et al.  Molecular profiling of nonalcoholic fatty liver disease-associated hepatocellular carcinoma using SB transposon mutagenesis , 2018, Proceedings of the National Academy of Sciences.

[10]  X. Bian,et al.  Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells , 2018, Cell Death & Differentiation.

[11]  Charlotte R. Feddersen,et al.  Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice , 2018, Hepatology.

[12]  J. Nadeau,et al.  Sleeping Beauty Insertional Mutagenesis in Mice Identifies Drivers of Steatosis-Associated Hepatic Tumors. , 2017, Cancer research.

[13]  Ning Zhang,et al.  Molecular alterations of the NF2 gene in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. , 2017, Oncology reports.

[14]  Sheida Nabavi,et al.  Genomic characteristics of trastuzumab-resistant Her2-positive metastatic breast cancer , 2017, Journal of Cancer Research and Clinical Oncology.

[15]  Julio Saez-Rodriguez,et al.  A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia , 2016, Cell reports.

[16]  E. Jho,et al.  Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling , 2016, BMB Reports.

[17]  E Lasonder,et al.  The scaffold protein KSR1, a novel therapeutic target for the treatment of Merlin-deficient tumors , 2016, Oncogene.

[18]  D. Buchsbaum,et al.  Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer , 2016, Oncotarget.

[19]  Natalie K. Wolf,et al.  RNA sequencing of Sleeping Beauty transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens , 2016, Genome research.

[20]  Suyun Huang,et al.  Merlin/NF2 Suppresses Pancreatic Tumor Growth and Metastasis by Attenuating the FOXM1-Mediated Wnt/β-Catenin Signaling. , 2015, Cancer research.

[21]  L. Tang,et al.  A splicing variant of Merlin promotes metastasis in hepatocellular carcinoma , 2015, Nature Communications.

[22]  T. Pawlik,et al.  Emerging role of Hpo signaling and YAP in hepatocellular carcinoma , 2015, Journal of hepatocellular carcinoma.

[23]  S. Saxena,et al.  Exosomal protein interactors as emerging therapeutic targets in urothelial bladder cancer. , 2015, Journal of the Egyptian National Cancer Institute.

[24]  S. Mane,et al.  Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. , 2015, Human molecular genetics.

[25]  L. Terracciano,et al.  Histopathology of hepatocellular carcinoma. , 2014, World journal of gastroenterology.

[26]  M. C. Isoldi,et al.  The role of key genes and pathways involved in the tumorigenesis of Malignant Mesothelioma. , 2014, Biochimica et biophysica acta.

[27]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[28]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[29]  Johann de Jong,et al.  Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model , 2013, Nature Genetics.

[30]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[31]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[32]  T. Scheetz,et al.  Identification of Rtl1, a Retrotransposon-Derived Imprinted Gene, as a Novel Driver of Hepatocarcinogenesis , 2013, PLoS genetics.

[33]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[34]  M. Georgescu,et al.  Moesin is a glioma progression marker that induces proliferation and Wnt/β-catenin pathway activation via interaction with CD44. , 2013, Cancer research.

[35]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[36]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[37]  D. Largaespada,et al.  Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with EGFR , 2013, Hepatology.

[38]  E. Brunt Histopathologic features of hepatocellular carcinoma , 2012, Clinical liver disease.

[39]  D. Largaespada,et al.  Why men are at higher risk for hepatocellular carcinoma? , 2012, Journal of hepatology.

[40]  Kathryn A. O’Donnell,et al.  A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer , 2012, Proceedings of the National Academy of Sciences.

[41]  Zhaoyu Li,et al.  Foxa1 and Foxa2 Are Essential for Sexual Dimorphism in Liver Cancer , 2012, Cell.

[42]  D. Largaespada,et al.  Modeling hepatitis B virus X–induced hepatocellular carcinoma in mice with the sleeping beauty transposon system , 2011, Hepatology.

[43]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[44]  N. Ratner,et al.  NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation , 2010, Oncogene.

[45]  T. Scheetz,et al.  A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. , 2009, Cancer research.

[46]  Derek Y. Chiang,et al.  Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. , 2009, Cancer research.

[47]  Derek Y. Chiang,et al.  A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma , 2009, Nature Biotechnology.

[48]  Derek Y. Chiang,et al.  Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. , 2008, Cancer research.

[49]  D. Largaespada,et al.  A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver , 2008, Hepatology.

[50]  C. Trautwein,et al.  Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma , 2007, European journal of gastroenterology & hepatology.

[51]  Michael Karin,et al.  References and Notes Supporting Online Material Materials and Methods Som Text Figs. S1 to S6 Tables S1 to S4 Gender Disparity in Liver Cancer Due to Sex Differences in Myd88-dependent Il-6 Production , 2022 .

[52]  Yitao Ding,et al.  Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma , 2007, BMC Cancer.

[53]  C. Harris,et al.  TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer , 2007, Oncogene.

[54]  P. Klenerman,et al.  Liver cell lines for the study of hepatocyte functions and immunological response , 2005, Liver international : official journal of the International Association for the Study of the Liver.

[55]  T. Mak,et al.  Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. , 2004, The Journal of clinical investigation.

[56]  A. Burroughs,et al.  Hepatocellular carcinoma , 2003, The Lancet.

[57]  P. Bannasch,et al.  Relevance of Hepatic Preneoplasia for Human Hepatocarcinogenesis , 2003, Toxicologic pathology (Print).

[58]  Philippe Soriano,et al.  Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. , 1993, Genes & development.

[59]  Salwa Teama,et al.  Increased Serum Endoglin and Transforming Growth Factor β1 mRNA Expression and Risk of Hepatocellular Carcinoma in Cirrhotic Egyptian Patients. , 2016, Asian Pacific journal of cancer prevention : APJCP.

[60]  A. Zimmermann Steatotic and Steatohepatitic Hepatocellular Carcinomas and Related Neoplasms , 2016 .

[61]  X. Sun,et al.  Wnt/β-catenin signaling regulates MAPK and Akt1 expression and growth of hepatocellular carcinoma cells. , 2011, Neoplasma.

[62]  Ronald A. DePinho,et al.  Hepatocellular carcinoma pathogenesis: from genes to environment , 2006, Nature Reviews Cancer.

[63]  N. Abels Merlin , 2005, Mittelalterrezeption im Musiktheater.