A fourth-order parabolic equation modeling epitaxial thin film growth

Abstract We study the continuum model for epitaxial thin film growth from Phys. D 132 (1999) 520–542, which is known to simulate experimentally observed dynamics very well. We show existence, uniqueness and regularity of solutions in an appropriate function space, and we characterize the existence of nontrivial equilibria in terms of the size of the underlying domain. In an investigation of asymptotical behavior, we give a weak assumption under which the ω-limit set of the dynamical system consists only of steady states. In the one-dimensional setting we can characterize the set of steady states and determine its unique asymptotically stable element. The article closes with some illustrative numerical examples.

[1]  E. Carlen,et al.  A Simple Proof of Stability of Fronts¶for the Cahn–Hilliard Equation , 2001 .

[2]  Thomas A. Read,et al.  Physics of Powder Metallurgy , 1949 .

[3]  M. Bertsch,et al.  Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .

[4]  Christian Großmann,et al.  Numerik partieller Differentialgleichungen , 1994 .

[5]  Francisco Bernis,et al.  Finite speed of propagation and continuity of the interface for thin viscous flows , 1996, Advances in Differential Equations.

[6]  Konstantin Mischaikow,et al.  Global asymptotic dynamics of gradient-like bistable equations , 1995 .

[7]  Amy Novick-Cohen,et al.  The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor , 1999 .

[8]  L. Peletier,et al.  Steady states of the one-dimensional Cahn–Hilliard equation , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[10]  Michael Ortiz,et al.  A continuum model of kinetic roughening and coarsening in thin films , 1999 .

[11]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[12]  Conyers Herring,et al.  Surface Tension as a Motivation for Sintering , 1999 .

[13]  Das Sarma S,et al.  Solid-on-solid rules and models for nonequilibrium growth in 2+1 dimensions. , 1992, Physical review letters.

[14]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[15]  A. Zangwill Some causes and a consequence of epitaxial roughening , 1996 .

[16]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[17]  K. Deimling Nonlinear functional analysis , 1985 .

[18]  M. Grinfeld,et al.  Counting stationary solutions of the Cahn–Hilliard equation by transversality arguments , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  Amy Novick-Cohen,et al.  On Cahn-Hilliard type equations , 1990 .

[20]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[21]  M. Winkler,et al.  Some results on degenerate parabolic equations not in divergence form , 2000 .

[22]  S. Edwards,et al.  The surface statistics of a granular aggregate , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Alessandra Lunardi,et al.  A semigroup approach to the time dependent parabolic initial-boundary value problem , 1992, Differential and Integral Equations.

[24]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[25]  Angus E. Taylor Introduction to functional analysis , 1959 .

[26]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[27]  R. Temam Navier-Stokes Equations , 1977 .

[28]  R. Kohn,et al.  A geometric model for coarsening during spiral-mode growth of thin films , 1999 .

[29]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[30]  H. Kielhöfer Pattern formation of the stationary Cahn-Hilliard model , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  W. Mullins Theory of Thermal Grooving , 1957 .

[32]  Avner Friedman,et al.  Partial differential equations , 1969 .

[33]  S. Maier-Paape,et al.  Path-following the equilibria of the Cahn–Hilliard equation on the square , 2002 .

[34]  The role of the transition function in a continuum model for kinetic roughening and coarsening in thin films , 2001 .