Lower and upper chromatic numbers for BSTSs(2 h - 1) ⁄

In [Discrete Math. 174, (1997) 247-259] an infinite class of STSs(2 h i1) was found with the upper chromatic number ¯ ´ = h. We prove that in this class, for all STSs(2 h i 1) with h < 10, the lower chromatic number coincides with the upper chromatic number, i.e. ´ = ¯ ´ = h; and moreover, there exists a infinite sub-class of STSs with ´ = ¯ ´ = h for any value of h.

[1]  P. Erdos,et al.  On chromatic number of graphs and set-systems , 1966 .

[2]  Claude Berge,et al.  Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.

[3]  Giovanni Lo Faro,et al.  2-Colourings in S(t, t + 1, v) , 1993, Discret. Math..

[4]  Vitaly I. Voloshin,et al.  The mixed hypergraphs , 1993, Comput. Sci. J. Moldova.

[5]  Vitaly I. Voloshin,et al.  On the upper chromatic number of a hypergraph , 1995, Australas. J Comb..

[6]  Zsolt Tuza,et al.  Upper chromatic number of Steiner triple and quadruple systems , 1997, Discret. Math..

[7]  Zsolt Tuza,et al.  Chromatic spectrum is broken , 1999, Electron. Notes Discret. Math..

[8]  Giovanni Lo Faro,et al.  The first BSTS with different upper and lower chromatic numbers , 2000, Australas. J Comb..

[9]  Dennis Saleh Zs , 2001 .

[10]  Zsolt Tuza,et al.  The Chromatic Spectrum of Mixed Hypergraphs , 2002, Graphs Comb..