Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer

[1]  I. Cabasso,et al.  Polysulfone hollow fibers. I. Spinning and properties , 1976 .

[2]  S. Loeb,et al.  Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane , 1997 .

[3]  J. Qin,et al.  Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fibre membranes , 1999 .

[4]  D Kozono,et al.  Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. , 1999, Journal of molecular biology.

[5]  Kai Yu Wang,et al.  The observation of elongation dependent macrovoid evolution in single- and dual-layer asymmetric hollow fiber membranes , 2004 .

[6]  Ming Yang,et al.  Effect of take-up speed on physical properties and permeation performance of cellulose acetate hollow fibers , 2005 .

[7]  E. Drioli,et al.  Effect of additives in the casting solution on the formation of PVDF membranes , 2006 .

[8]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[9]  J. McCutcheon,et al.  Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis , 2006 .

[10]  S. V. Joshi,et al.  Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions , 2006 .

[11]  A. Kidera,et al.  Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. , 2007, Biophysical journal.

[12]  Wolfgang Meier,et al.  Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z , 2007, Proceedings of the National Academy of Sciences.

[13]  N. Peng,et al.  The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon® hollow fiber membranes , 2008 .

[14]  Benny D. Freeman,et al.  Water permeability and water/salt selectivity tradeoff in polymers for desalination , 2008 .

[15]  D. T. Liang,et al.  Effect of additives on the fabrication of poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes , 2008 .

[16]  Rong Wang,et al.  Effect of the rheology of poly(vinylidene fluoride-co-hexafluropropylene)(PVDF–HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors , 2009 .

[17]  A. Ghosh,et al.  Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes , 2009 .

[18]  H. Kawakami,et al.  Fabrication study of polysulfone hollow-fiber microfiltration membranes: Optimal dope viscosity for nucleation and growth , 2009 .

[19]  Chuyang Y. Tang,et al.  Characteristics and potential applications of a novel forward osmosis hollow fiber membrane , 2010 .

[20]  Leyuan Shi,et al.  Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes , 2011 .

[21]  Menachem Elimelech,et al.  Relating performance of thin-film composite forward osmosis membranes to support layer formation and , 2011 .

[22]  Yen Wah Tong,et al.  Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. , 2012, Small.

[23]  W. Meier,et al.  Erratum: Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z(Small (2012) 8 (1185-1190) DOI: 10.1002/smll. 201102120) , 2012 .

[24]  Linda Zou,et al.  Recent developments in forward osmosis : opportunities and challenges. , 2012 .

[25]  P. Sukitpaneenit,et al.  High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. , 2012, Environmental science & technology.

[26]  Chuyang Y. Tang,et al.  Preparation of supported lipid membranes for aquaporin Z incorporation. , 2012, Colloids and surfaces. B, Biointerfaces.

[27]  Xiao Hu,et al.  Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization , 2012 .

[28]  E. Hoek,et al.  Transport through composite membrane, part 1: Is there an optimal support membrane? , 2012 .

[29]  E. Hoek,et al.  Impacts of Operating Conditions and Solution Chemistry on Osmotic Membrane Structure and Performance. , 2012, Desalination.

[30]  Rong Wang,et al.  Robust and High performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis , 2013 .

[31]  Chuyang Y. Tang,et al.  Forward osmosis with a novel thin-film inorganic membrane. , 2013, Environmental science & technology.

[32]  Yen Wah Tong,et al.  An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration , 2013 .

[33]  N. Hilal,et al.  A review on membrane fabrication: Structure, properties and performance relationship , 2013 .

[34]  Guofei Sun,et al.  A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane , 2013 .

[35]  Martin Weber,et al.  Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates. , 2013, Environmental science & technology.

[36]  Nhu-Ngoc Bui,et al.  Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. , 2013, Environmental science & technology.

[37]  Chuyang Y. Tang,et al.  Fusion behaviour of aquaporin Z incorporated proteoliposomes investigated by quartz crystal microbalance with dissipation (QCM-D). , 2013, Colloids and surfaces. B, Biointerfaces.

[38]  Chuyang Y. Tang,et al.  Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z , 2014 .

[39]  L. Rietveld,et al.  Forward osmosis for application in wastewater treatment: a review. , 2014, Water research.

[40]  Chuyang Y. Tang,et al.  Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance , 2015 .

[41]  How Yong Ng,et al.  Fabrication of layered silica–polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane , 2015 .

[42]  H. Matsuyama,et al.  Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support , 2015 .

[43]  B. Helmer,et al.  Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes , 2015 .

[44]  Jeffrey R. McCutcheon,et al.  Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models , 2015 .

[45]  Jay R. Werber,et al.  Forward osmosis: Where are we now? , 2015 .

[46]  Jeffrey R. McCutcheon,et al.  Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter , 2015 .

[47]  Laura Chekli,et al.  A comprehensive review of hybrid forward osmosis systems , 2016 .

[48]  Jay R. Werber,et al.  The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes , 2016 .

[49]  Rong Wang,et al.  Identification of safe and stable operation conditions for pressure retarded osmosis with high performance hollow fiber membrane , 2016 .