RAPID VARIABILITY OF BLAZAR 3C 279 DURING FLARING STATES IN 2013−2014 WITH JOINT FERMI-LAT, NuSTAR, SWIFT, AND GROUND-BASED MULTI-WAVELENGTH OBSERVATIONS

We report the results of a multiband observing campaign on the famous blazar 3C 279 conducted during a phase of increased activity from 2013 December to 2014 April, including first observations of it with NuSTAR. The γ-ray emission of the source measured by Fermi-LAT showed multiple distinct flares reaching the highest flux level measured in this object since the beginning of the Fermi mission, with F ( E > 100 MeV ) ?> of 10−5 photons cm−2 s−1, and with a flux-doubling time scale as short as 2 hr. The γ-ray spectrum during one of the flares was very hard, with an index of Γ γ = 1.7 ± 0.1 ?> , which is rarely seen in flat-spectrum radio quasars. The lack of concurrent optical variability implies a very high Compton dominance parameter L γ / L syn > 300 ?> . Two 1 day NuSTAR observations with accompanying Swift pointings were separated by 2 weeks, probing different levels of source activity. While the 0.5−70 keV X-ray spectrum obtained during the first pointing, and fitted jointly with Swift-XRT is well-described by a simple power law, the second joint observation showed an unusual spectral structure: the spectrum softens by Δ Γ X ≃ 0.4 ?> at ∼4 keV. Modeling the broadband spectral energy distribution during this flare with the standard synchrotron plus inverse-Compton model requires: (1) the location of the γ-ray emitting region is comparable with the broad-line region radius, (2) a very hard electron energy distribution index p ≃ 1 ?> , (3) total jet power significantly exceeding the accretion-disk luminosity L j / L d ≳ 10 ?> , and (4) extremely low jet magnetization with L B / L j ≲ 10 − 4 ?> . We also find that single-zone models that match the observed γ-ray and optical spectra cannot satisfactorily explain the production of X-ray emission.

[1]  F. Guo,et al.  POLARIZATION SWINGS REVEAL MAGNETIC ENERGY DISSIPATION IN BLAZARS , 2015, 1502.07825.

[2]  Athens,et al.  TIME DEPENDENT HADRONIC MODELING OF FLAT SPECTRUM RADIO QUASARS , 2015, 1502.03950.

[3]  V. Paliya,et al.  MULTI-WAVELENGTH OBSERVATIONS OF 3C 279 DURING THE EXTREMELY BRIGHT GAMMA-RAY FLARE IN 2014 MARCH–APRIL , 2015, 1501.07363.

[4]  M. Boettcher,et al.  Hadronic models of blazars require a change of the accretion paradigm , 2015, 1501.06124.

[5]  M. Sikora,et al.  Magnetization of jets in luminous blazars , 2014, 1411.7331.

[6]  G. Ghisellini,et al.  The power of relativistic jets is larger than the luminosity of their accretion disks , 2014, Nature.

[7]  J. Poutanen,et al.  THE MYSTERY OF SPECTRAL BREAKS: LYMAN CONTINUUM ABSORPTION BY PHOTON–PHOTON PAIR PRODUCTION IN THE FERMI GeV SPECTRA OF BRIGHT BLAZARS , 2014, 1408.0793.

[8]  N. Vlahakis,et al.  Rarefaction wave in relativistic steady magnetohydrodynamic flows , 2014, 1407.4978.

[9]  C. Reynolds,et al.  AN XMM-NEWTON VIEW OF THE RADIO GALAXY 3C 411 , 2014, 1407.2625.

[10]  M. Sikora,et al.  CONSTRAINING THE LOCATION OF GAMMA-RAY FLARES IN LUMINOUS BLAZARS , 2014, 1405.7694.

[11]  William Daughton,et al.  Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. , 2014, Physical review letters.

[12]  D. Folini,et al.  The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness , 2014, 1405.2938.

[13]  Engineering,et al.  MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510−089 in early 2012 , 2014, Astronomy & Astrophysics.

[14]  L. Sironi,et al.  RELATIVISTIC RECONNECTION: AN EFFICIENT SOURCE OF NON-THERMAL PARTICLES , 2014, 1401.5471.

[15]  A. Tchekhovskoy,et al.  Transient jet formation and state transitions from large-scale magnetic reconnection in black hole accretion discs , 2013, 1312.1691.

[16]  Astronomy,et al.  MAGIC observations and multifrequency properties of the flat spectrum radio quasar 3C 279 in 2011 , 2013, 1311.2833.

[17]  B. Lott,et al.  EQUIPARTITION GAMMA-RAY BLAZARS AND THE LOCATION OF THE GAMMA-RAY EMISSION SITE IN 3C 279 , 2013, 1304.6680.

[18]  R. Blandford,et al.  Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images , 2012, 1208.0597.

[19]  E. Recillas,et al.  EXPLORING THE BLAZAR ZONE IN HIGH-ENERGY FLARES OF FSRQs , 2013, 1312.3998.

[20]  S. Buson Fermi LAT detection of a GeV flare from the FSRQ 3C 279 , 2013 .

[21]  M. Sikora,et al.  ON THE ORIGIN OF X-RAY SPECTRA IN LUMINOUS BLAZARS , 2013, 1311.0670.

[22]  F. Aharonian,et al.  STAR–JET INTERACTIONS AND GAMMA-RAY OUTBURSTS FROM 3C454.3 , 2013, 1305.5117.

[23]  Nasa The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010 , 2013 .

[24]  P. Marshall,et al.  Reconstructing the lensing mass in the Universe from photometric catalogue data , 2013, 1303.6564.

[25]  T. Takahashi,et al.  VERY RAPID HIGH-AMPLITUDE GAMMA-RAY VARIABILITY IN LUMINOUS BLAZAR PKS 1510−089 STUDIED WITH FERMI-LAT , 2013, 1302.0335.

[26]  William W. Zhang,et al.  THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.

[27]  K. Nalewajko The brightest gamma-ray flares of blazars , 2012, 1211.0274.

[28]  T. Treu,et al.  COSMIC EVOLUTION OF BLACK HOLES AND SPHEROIDS , 2013 .

[29]  M. Sikora,et al.  ON THE ORIGIN OF THE γ-RAY/OPTICAL LAGS IN LUMINOUS BLAZARS , 2012, 1210.5056.

[30]  M. Kidger,et al.  HERSCHEL PACS AND SPIRE OBSERVATIONS OF BLAZAR PKS 1510−089: A CASE FOR TWO BLAZAR ZONES , 2012, 1210.4552.

[31]  A. Mastichiadis,et al.  On proton synchrotron blazar models: the case of quasar 3C 279 , 2012, 1207.5227.

[32]  W. P. Chen,et al.  THE STRUCTURE AND EMISSION MODEL OF THE RELATIVISTIC JET IN THE QUASAR 3C 279 INFERRED FROM RADIO TO HIGH-ENERGY γ-RAY OBSERVATIONS IN 2008–2010 , 2012, 1206.0745.

[33]  J. Isler,et al.  SMARTS OPTICAL AND INFRARED MONITORING OF 12 GAMMA-RAY BRIGHT BLAZARS , 2012, 1201.4380.

[34]  Vlasios Vasileiou,et al.  FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG , 2011 .

[35]  R. Blandford,et al.  Adiabatic evolution of mass-losing stars , 2011, 1110.2582.

[36]  R. Blandford,et al.  Roche Accretion of stars close to massive black holes , 2011, 1110.2614.

[37]  J. Miranda,et al.  MAGIC DISCOVERY OF VERY HIGH ENERGY EMISSION FROM THE FSRQ PKS 1222+21 , 2011, 1101.4645.

[38]  J. Isler,et al.  SIMILARITY OF THE OPTICAL–INFRARED AND γ-RAY TIME VARIABILITY OF FERMI BLAZARS , 2011, 1101.3815.

[39]  Italy Universita dell'Insubria,et al.  MAGIC observations and multiwavelength properties of the quasar 3C 279 in 2007 and 2009 , 2011, 1101.2522.

[40]  J. Chiang,et al.  GAMMA-RAY LIGHT CURVES AND VARIABILITY OF BRIGHT FERMI-DETECTED BLAZARS , 2010, 1004.0348.

[41]  P. Giommi,et al.  A change in the optical polarization associated with a γ-ray flare in the blazar 3C 279 , 2010 .

[42]  T Glanzman,et al.  Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data. , 2010, Physical review letters.

[43]  Robert P. Johnson,et al.  THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE , 2010, 1002.0150.

[44]  Cosmology,et al.  Magnetohydrodynamic simulations of gamma-ray burst jets: Beyond the progenitor star , 2009, 0909.0011.

[45]  T. Sakamoto,et al.  THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY , 2009, 0903.3037.

[46]  S. Komissarov,et al.  Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources , 2009, 0912.0845.

[47]  A. Marscher,et al.  IMPLICATIONS OF THE VERY HIGH ENERGY GAMMA-RAY DETECTION OF THE QUASAR 3C279 , 2009 .

[48]  D. Thompson,et al.  Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT , 2009, Science.

[49]  D. Thompson,et al.  A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope , 2009, Science.

[50]  D. Thompson,et al.  Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi , 2009, Science.

[51]  C. Villforth,et al.  The host galaxy of 3C 279 , 2009, 0908.1618.

[52]  M. Sikora,et al.  CONSTRAINING EMISSION MODELS OF LUMINOUS BLAZAR SOURCES , 2009, 0904.1414.

[53]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[54]  R. Scalzo,et al.  CORRELATED VARIABILITY IN THE BLAZAR 3C 454.3 , 2008, 0812.4582.

[55]  P. Giommi,et al.  Results of WEBT, VLBA and RXTE monitoring of 3C 279 during 2006-2007 ⋆ , 2008, 0810.4261.

[56]  H. R. Miller,et al.  Correlated Multi-Wave Band Variability in the Blazar 3C 279 from 1996 to 2007 , 2008, 0808.2194.

[57]  Yukiko Kamata,et al.  Wide-field one-shot optical polarimeter: HOWPol , 2008, Astronomical Telescopes + Instrumentation.

[58]  L. A. Antonelli,et al.  Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe? , 2008, Science.

[59]  R. Blandford,et al.  A measurement of the faint source correlation function in the GOODS and UDF surveys , 2008, 0805.4458.

[60]  N. Gehrels,et al.  The Gamma Ray Burst section of the White Paper on the Status and Future of Very High Energy Gamma Ray Astronomy: A Brief Preliminary Report , 2008, 0804.2256.

[61]  Ulrich Hopp,et al.  FIRST-YEAR SPECTROSCOPY FOR THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY , 2008, 0802.3220.

[62]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[63]  Shai Kaspi,et al.  Reverberation Mapping of High-Luminosity Quasars: First Results , 2006, astro-ph/0612722.

[64]  N. Gehrels,et al.  The VLBA Imaging and Polarimetry Survey at 5 GHz , 2006, astro-ph/0611459.

[65]  J. Dunlop,et al.  From Z-Machines to Alma: (SUB) Millimeter Spectroscopy of Galaxies , 2007 .

[66]  Astronomy,et al.  The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements , 2006, astro-ph/0602412.

[67]  S. Suyu,et al.  The Anatomy of a quadruply imaged gravitational lens system , 2005, astro-ph/0506629.

[68]  N. Gehrels,et al.  The First INTEGRAL AGN Catalog , 2005, astro-ph/0510530.

[69]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[70]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[71]  R. Blandford,et al.  The Structure of Magnetocentrifugal Winds. I. Steady Mass Loading , 2004, astro-ph/0410704.

[72]  R. Blandford,et al.  Resonant excitation of white dwarf oscillations in compact object binaries , 2004, astro-ph/0406102.

[73]  G. Ghisellini,et al.  Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties , 2004, astro-ph/0406093.

[74]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[75]  Caltech,et al.  CLASS B2108+213: a new wide-separation gravitational lens system , 2004, astro-ph/0410554.

[76]  Gravitational lenses: The bending of light reveals information about dark matter, and black holes , 2004 .

[77]  M. Lister,et al.  Change in Speed and Direction of the Jet near the Core in the Quasar 3C 279 , 2004 .

[78]  P. Giommi,et al.  Chandra Observations of the X-Ray Environs of SN 1998bw/GRB 980425 , 2004, astro-ph/0401184.

[79]  R. Blandford,et al.  Magnetocentrifugal Launching of Jets from Accretion Disks. II. Inner Disk-driven Winds , 2003, astro-ph/0306519.

[80]  R. Blandford,et al.  Locating the Launching Region of T Tauri Winds: The Case of DG Tauri , 2003, astro-ph/0304127.

[81]  Avery BroderickRoger Blandford Covariant magnetoionic theory — I. Ray propagation , 2003, astro-ph/0302190.

[82]  C. Fassnacht,et al.  The Cosmic Lens All-Sky Survey - II. Gravitational lens candidate selection and follow-up , 2002, astro-ph/0211069.

[83]  Caltech,et al.  Proposed Next Generation GRB Mission: EXIST , 2002, astro-ph/0205323.

[84]  M. Sikora,et al.  Numerical simulations of radiation from blazar jets , 2002, astro-ph/0205228.

[85]  C. Fassnacht,et al.  The Cosmic Lens All-Sky Survey - I. Source selection and observations , 2002, astro-ph/0211073.

[86]  A. G. de Bruyn,et al.  Constraints on cosmological parameters from the analysis of the cosmic lens all sky survey radio-selected gravitational lens statistics. , 2002, Physical review letters.

[87]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[88]  M. Gu,et al.  On the masses of black holes in radio-loud quasars , 2001, astro-ph/0104383.

[89]  A. G. de Bruyn,et al.  The New Two-Image Gravitational Lens System CLASS B2319+051 , 2001, astro-ph/0104399.

[90]  Edinburgh,et al.  Pmn j0525-3343: soft x-ray spectral flattening in a blazar at z=4.4 , 2000, astro-ph/0011566.

[91]  A. G. de Bruyn,et al.  CLASS B0739+366: A New Two-Image Gravitational Lens System , 2000, astro-ph/0008037.

[92]  Blandford,et al.  Caltech Faint Galaxy Redshift Survey. XI. The Merger Rate to Redshift 1 from Kinematic Pairs , 2000, The Astrophysical journal.

[93]  A. G. de Bruyn,et al.  CLASS B1555+375: A New Four-Image Gravitational Lens System , 1999 .

[94]  J. E. Pesce,et al.  Ultraviolet and Multiwavelength Variability of the Blazar 3C 279: Evidence for Thermal Emission , 1999, astro-ph/9906326.

[95]  J. P. Norris,et al.  Connection between Energy-dependent Lags and Peak Luminosity in Gamma-Ray Bursts , 1999, astro-ph/9903233.

[96]  Zhi-Yun Li,et al.  Magnetocentrifugal Launching of Jets from Accretion Disks. I. Cold Axisymmetric Flows , 1999, astro-ph/9902200.

[97]  A. Lähteenmäki,et al.  Total Flux Density Variations in Extragalactic Radio Sources. I. Decomposition of Variations into Exponential Flares , 1999 .

[98]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[99]  C. Fassnacht,et al.  B0712+472: a new radio four-image gravitational lens , 1998 .

[100]  A. Szalay,et al.  A Blind Test of Photometric Redshift Prediction , 1998, astro-ph/9801133.

[101]  R. Blandford,et al.  Are AGN broad emission lines formed by discrete clouds? Analysis of Keck high‐resolution spectroscopy of NGC 4151 , 1998, astro-ph/9801012.

[102]  E. I. Robson,et al.  Multiwavelength Observations of a Dramatic High-Energy Flare in the Blazar 3C 279 , 1997, astro-ph/9711243.

[103]  I. Smail,et al.  A statistical analysis of the galaxy populations of distant luminous X-ray clusters , 1997, astro-ph/9707231.

[104]  D. L. Bertsch,et al.  The Likelihood Analysis of EGRET Data , 1996 .

[105]  M. Turner,et al.  Simultaneous Multiwavelength Spectrum and Variability of 3C 279 from 10 9 to 10 24 Hz , 1996 .

[106]  R. Blandford,et al.  Pair cascades in extragalactic jets. 1: Gamma rays , 1995 .

[107]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[108]  Zhi-Yun Li,et al.  Asymptotic domination of cold relativistic MHD winds by kinetic energy flux , 1994 .

[109]  Martin J. Rees,et al.  Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? , 1994 .

[110]  D. Thompson,et al.  Detection of high-energy gamma radiation from quasar 3C 279 by the EGRET telescope on the Compton Gamma Ray Observatory , 1992 .

[111]  C. Lynds,et al.  New Spectroscope Observations of Quasi-Stellar Sources. , 1965 .