Top Quarks and Diamonds

An analysis of proton-proton collision data at a centre-of-mass energy of 8TeV is presented in this thesis. Data were collected with the Compact Muon Solenoid particle detector in 2012. The Standard Model of Particle Physics is probed by measuring the production cross section of top quark pairs in association with a W boson. To identify this rare process from background contributions, a decay channel with two leptons of same-signed electric charge in the final state is selected. The main background processes, stemming from misidentification of leptons, are estimated using a ratio method. Similarly, the yield of background processes originating from mismeasurements of the lepton’s electric charge is estimated. The cross section is measured to be σttW = 170 +90 −80 (stat) +70 −70 (syst) fb with a significance of 1.6 standard deviations over the background-only hypothesis and found to be in agreement with theoretical predictions. In the second part of this dissertation, diamond is studied as an alternative to silicon for tracking detectors. The radiation tolerance of diamond strip sensors, manufactured from industrial grown chemical vapour deposition diamond, is characterised. For this purpose, the diamond samples were irradiated with 800MeV protons, 70MeV protons, and fast neutrons. Between irradiations, the sensors were tested in a hadron beam with a momentum of 120GeV/c. The signal response to charged particles, as measured by the observed pulse height, is reconstructed with multiple algorithms. The resulting pulse height as a function of fluence is fitted using a simple model and radiation damage constants of 1.24 −0.04×10 cm/(p μm), 1.64 +0.25 −0.27 ×10−18 cm/(p μm), and 3.05 +0.27 −0.27 ×10−18 cm/(n μm) are obtained for 800MeV protons, 70MeV protons, and fast neutrons, respectively. Furthermore, the fluence dependence of the energy resolution and spatial resolution of the diamond strip detectors are measured.

[1]  John David Jackson,et al.  Classical Electrodynamics , 2020, Nature.

[2]  F. Bachmair,et al.  CVD Diamond Sensors In Detectors For High Energy Physics , 2016 .

[3]  Karen Elizabeth Kippen,et al.  Los Alamos Neutron Science Center , 2016 .

[4]  Lucio Rossi,et al.  High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report , 2015 .

[5]  D Contardo,et al.  Technical Proposal for the Phase-II Upgrade of the CMS Detector , 2015 .

[6]  B. Ishak Introduction to Elementary Particle Physics (2nd Edition), by Alessandro Bettini , 2014 .

[7]  C. Collaboration,et al.  Description and performance of track and primary-vertex reconstruction with the CMS tracker , 2014, 1405.6569.

[8]  M. Vos,et al.  Physical Limitations to the Spatial Resolution of Solid-State Detectors , 2014, IEEE Transactions on Nuclear Science.

[9]  M. Červ The ATLAS Diamond Beam Monitor , 2014 .

[10]  S. Seidel Recent results on diamond radiation tolerance , 2014 .

[11]  Tai Sakuma,et al.  Detector and Event Visualization with SketchUp at the CMS Experiment , 2013, 1311.4942.

[12]  Alexander Oh,et al.  A novel detector with graphitic electrodes in CVD diamond , 2013 .

[13]  W. Brand,et al.  Atomic weights of the elements 2011 (IUPAC Technical Report) , 2013 .

[14]  Richard P. Mildren,et al.  Optical Engineering of Diamond , 2013 .

[15]  J. Tsung Diamond and Silicon Pixel Detectors in High Radiation Environments , 2013 .

[16]  G. Bruno,et al.  Identification of b-quark jets with the CMS experiment , 2013 .

[17]  A. Dominguez,et al.  CMS Technical Design Report for the Pixel Detector Upgrade , 2012 .

[18]  M. Havranek,et al.  Signal and noise of diamond pixel detectors at high radiation fluences , 2012, 1206.6795.

[19]  F. Schilling TOP QUARK PHYSICS AT THE LHC: A REVIEW OF THE FIRST TWO YEARS , 2012, 1206.4484.

[20]  J. Campbell,et al.  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline t {W^{\pm }} $$\end{document} production and decay at NLO , 2012, Journal of High Energy Physics.

[21]  Luka Snoj,et al.  Computational analysis of irradiation facilities at the JSI TRIGA reactor. , 2012, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[22]  C. Collaboration,et al.  Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS , 2011, 1107.4277.

[23]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[24]  R. Eusebi,et al.  Diamond pixel modules , 2011 .

[25]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[26]  S. Frixione,et al.  Matching NLO QCD computations with PYTHIA using MC@NLO , 2010, 1002.4293.

[27]  E. Castro,et al.  Fast Beam Conditions Monitor BCM1F for the CMS Experiment , 2009, 0911.2480.

[28]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[29]  M. Domke,et al.  Commissioning of the beam conditions monitor of the LHCb experiment at CERN , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[30]  João Paulo Teixeira,et al.  The CMS experiment at the CERN LHC , 2008 .

[31]  A. Shibata,et al.  Top Quark Physics at the LHC , 2008, DIS 2008.

[32]  D. R. Penn,et al.  Calculations of stopping powers of 100eV–30keV electrons in 31 elemental solids , 2008 .

[33]  M. Cacciari,et al.  The Catchment Area of Jets , 2008, 0802.1188.

[34]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[35]  A. Gorisek,et al.  The ATLAS beam conditions monitor , 2008, IEEE Nuclear Science Symposium Conference Record, 2005.

[36]  D. Ryutov,et al.  Using plasma physics to weigh the photon , 2007 .

[37]  P. Vahle Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam , 2007 .

[38]  V. Cindro,et al.  Study of polycrystalline and single crystal diamond detectors irradiated with pions and neutrons up to 3×1015 cm−2 , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[39]  M. Cacciari,et al.  Pileup subtraction using jet areas , 2007, 0707.1378.

[40]  R. S. Thorne,et al.  Parton distributions for the LHC , 2007, 0901.0002.

[41]  W. de Boer,et al.  Radiation hardness of diamond and silicon sensors compared , 2007, 0705.0171.

[42]  P. Dong,et al.  Beam Condition Monitoring With Diamonds at CDF , 2007, IEEE Transactions on Nuclear Science.

[43]  M. Wolter,et al.  TMVA - Toolkit for Multivariate Data Analysis , 2007, physics/0703039.

[44]  Safa Kasap,et al.  Springer Handbook of Electronic and Photonic Materials , 2007 .

[45]  R. Kass,et al.  Radiation hard diamond sensors for future tracking applications , 2006 .

[46]  E. al.,et al.  Measurement of neutrino oscillation by the K2K experiment , 2006, hep-ex/0606032.

[47]  D. Bourilkov,et al.  LHAPDF: PDF use from the Tevatron to the LHC , 2006, hep-ph/0605240.

[48]  R. Kass,et al.  Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC , 2006 .

[49]  R. Kass,et al.  Radiation monitoring with CVD diamonds in BaBar , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[50]  B. Grinstein Quantum Chromodynamics: High Energy Experiments and Theory , 2004 .

[51]  O. Madelung Semiconductors: Data Handbook , 2003 .

[52]  Marty R. Shaneyfelt,et al.  Improved capabilities for proton and neutron irradiations at TRIUMF , 2003, 2003 IEEE Radiation Effects Data Workshop.

[53]  R. Frühwirth,et al.  Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC , 2003, physics/0306087.

[54]  G. Kramberger Signal development in irradiated silicon detectors , 2001 .

[55]  J. Huston,et al.  Uncertainties of predictions from parton distribution functions. II. The Hessian method , 2001, hep-ph/0101032.

[56]  E. W. Blackmore,et al.  Operation of the TRIUMF (20-500 MeV) proton irradiation facility , 2000, 2000 IEEE Radiation Effects Data Workshop. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.00TH8527).

[57]  W. Adam,et al.  Pulse height distribution and radiation tolerance of CVD diamond detectors , 2000 .

[58]  P. May Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  M. Huhtinen,et al.  Radiation test facilities in the new PS East Hall at CERN , 1999, 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471).

[60]  R. Kass,et al.  Review of the development of diamond radiation sensors , 1999 .

[61]  R. Kass,et al.  Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC , 1999 .

[62]  Eckhart Fretwurst,et al.  Radiation hardness of silicon detectors — a challenge from high-energy physics , 1999 .

[63]  E. Vallazza,et al.  The BaBar Physics Book: Physics at an Asymmetric B Factory , 1998 .

[64]  R. Kass,et al.  CVD diamond detectors for ionizing radiation , 1998 .

[65]  E. al.,et al.  Determination of the absolute jet energy scale in the DØ calorimeters , 1998, hep-ex/9805009.

[66]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[67]  Alex Zehnder,et al.  The Proton Irradiation Facility at the Paul Scherrer Institute , 1996 .

[68]  Claude Colledani,et al.  A submicron precision silicon telescope for beam test purposes , 1996 .

[69]  Richard Kass,et al.  First measurements with a diamond microstrip detector , 1995 .

[70]  R. Turchetta,et al.  Spatial resolution of silicon microstrip detectors , 1993 .

[71]  Don M. Parkin,et al.  Displacement threshold energy for type IIa diamond , 1992 .

[72]  Peter K. Bachmann,et al.  Towards a general concept of diamond chemical vapour deposition , 1991 .

[73]  J. Kuhn,et al.  QCD Corrections to Semileptonic Decays of Heavy Quarks , 1989 .

[74]  Hans Bichsel,et al.  Straggling in thin silicon detectors , 1988 .

[75]  R. Frühwirth Application of Kalman filtering to track and vertex fitting , 1987 .

[76]  I. Peterson Diamonds in Nature , 1985 .

[77]  G. Lutz,et al.  Silicon strip detectors with capacitive charge division , 1985 .

[78]  Anthony J. G. Hey,et al.  Gauge theories in particle physics , 1984 .

[79]  Alan D. Martin,et al.  Quarks and Leptons: An Introductory Course in Modern Particle Physics , 1984 .

[80]  V. Radeka,et al.  Charge Collection in Silicon Strip Detectors , 1983, IEEE Transactions on Nuclear Science.

[81]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[82]  S. Behrends,et al.  Properties of argon-ethane/methane mixtures for use in proportional counters , 1981 .

[83]  C. Canali,et al.  Electrical properties and performances of natural diamond nuclear radiation detectors , 1979 .

[84]  J. L. Lopes,et al.  A model for leptons , 1977 .

[85]  P. Siffert,et al.  Preparation and Characteristics of Natural Diamond Nuclear Radiation Detectors , 1975, IEEE Transactions on Nuclear Science.

[86]  M E Phelps,et al.  Semiconductor detector systems. , 1973, Seminars in nuclear medicine.

[87]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[88]  Makoto Kobayashi,et al.  CP Violation in the Renormalizable Theory of Weak Interaction , 1973 .

[89]  C. Canali,et al.  Measurements of the Average Energy Per Electron-Hole Pair Generation in Silicon between 5-320°K , 1972 .

[90]  S. Glashow,et al.  Weak Interactions with Lepton-Hadron Symmetry , 1970 .

[91]  G. Guralnik,et al.  Global Conservation Laws and Massless Particles , 1964 .

[92]  J. C. Ward,et al.  Electromagnetic and weak interactions , 1964 .

[93]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[94]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[95]  N. Cabibbo Unitary Symmetry and Leptonic Decays , 1963 .

[96]  S. Glashow Partial Symmetries of Weak Interactions , 1961 .

[97]  P. V. Vavilov IONIZATION LOSSES OF HIGH-ENERGY HEAVY PARTICLES , 1957 .

[98]  A. Burtsev,et al.  HIGH ENERGY PARTICLES , 1957 .

[99]  R. Sternheimer,et al.  Density Effect for the Ionization Loss in Various Materials , 1952 .

[100]  H. Bethe Bremsformel für Elektronen relativistischer Geschwindigkeit , 1932 .

[101]  R. Quagliani The LHCb Detector at the LHC , 2018 .

[102]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[103]  I. Macneill Measurement of top quark-antiquark pair production in association with a Z boson with a trilepton final state in pp collisions at 8 TeV center of mass energy , 2015 .

[104]  C. Maazouzi,et al.  A 3 D Diamond Detector for Particle Tracking , 2015 .

[105]  Marco Rossini,et al.  Module Prototype Qualification for the CMS Pixel Detector Upgrade , 2015 .

[106]  T. Peiffer Signal modeling uncertainties in top quark production , 2014 .

[107]  B. Stieger Same-sign dileptons at CMS , 2013 .

[108]  P. Cai,et al.  Reliable Perturbative Results for Strong Interactions ? , 2011 .

[109]  Measurement of the WW, WZ and ZZ cross sections at CMS , 2011 .

[110]  G. Davies,et al.  CVD Diamond for Electronic Devices and Sensors , 2009 .

[111]  C. Lefevre LHC: the guide , 2008 .

[112]  Lyndon Evans,et al.  LHC Machine , 2008 .

[113]  X Li,et al.  The ALICE experiment at the CERN LHC , 2008 .

[114]  D. Wardrope,et al.  Measuring electron efficiencies at CMS with early data , 2007 .

[115]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[116]  M. Shur,et al.  Handbook Series on Semiconductor Parameters , 1996 .

[117]  Shulai Zhao,et al.  Characterization of the Electrical Properties of Polycrystalline Diamond Films , 1994 .

[118]  J. Field The Properties of natural and synthetic diamond , 1992 .

[119]  N. Bingefors,et al.  SIROCCO-IV: Front end readout processor for DELPHI microvertex , 1988 .

[120]  R. F. Peierls,et al.  General expression for the density effect for the ionization loss of charged particles , 1971 .

[121]  H. Bichsel,et al.  MEAN EXCITATION POTENTIAL OF LIGHT COMPOUNDS. , 1968 .

[122]  S. V. D. Meer,et al.  Calibration of the Effective Beam Height in the ISR , 1968 .

[123]  Lev Davidovich Landau,et al.  On the energy loss of fast particles by ionization , 1944 .

[124]  F. Bloch,et al.  Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie , 1933 .

[125]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[126]  Particle – Flow Event Reconstruction in CMS and Performance for Jets , Taus , 2022 .