Combinatorial Heterogeneous Catalysis-A New Path in an Old Field.

Combinatorial catalysis is the systematic preparation, processing, and testing of large diversities of chemically and physically different materials libraries in a high-throughput fashion. It also embodies microfabrication, robotics, automation, instrumentation, computational chemistry, and large-scale information management (informatics), and as such carries the promise of a renaissance in catalytic reaction engineering. Significant progress has already been made in demonstrating the speed and economic advantage of combinatorial approaches by the discovery of superior catalytic materials in a matter of hours and days, as opposed to the months and years required using traditional methods. Combinatorial methods can also significantly contribute to our understanding of catalytic function by increasing our chances of discovering totally new and unexpected catalytic materials, and by expediting the recognition of trends and patterns of structure-activity relations, from which new catalytic materials can be designed more efficiently. Combinatorial catalysis undoubtedly will be the new paradigm of catalysis research as the industry faces increasing global competition and pressure for the development of environmentally friendly processes at a time when resources for research are diminishing.

[1]  M. F. Cardoso,et al.  Nonequilibrium simulated annealing : a faster approach to combinatorial minimization , 1994 .

[2]  R. Brown,et al.  Genetic diversity: applications of evolutionary algorithms to combinatorial library design , 1998 .

[3]  Tomasz Imielinski,et al.  Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..

[4]  Snively,et al.  Chemically sensitive high throughput parallel analysis of solid phase supported library members , 2000, Journal of combinatorial chemistry.

[5]  Luhua Lai,et al.  Data Mining of Toxic Chemicals: Structure Patterns and QSAR , 1999 .

[6]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  James Thomas Richardson,et al.  Principles of Catalyst Development , 1989 .

[9]  Selim M. Senkan,et al.  High-throughput screening of solid-state catalyst libraries , 1998, Nature.

[10]  Arne Karlsson,et al.  Combinatorial Approach to the Hydrothermal Synthesis of Zeolites. , 1998, Angewandte Chemie.

[11]  Manfred Baerns,et al.  An evolutionary approach in the combinatorial selection and optimization of catalytic materials , 2000 .

[12]  Momoji Kubo,et al.  Combinatorial computational chemistry approach to the design of deNOx catalysts , 2000 .

[13]  Wilhelm F. Maier,et al.  IR‐thermographische Erkennung katalytischer Aktivität in kombinatorischen Bibliotheken heterogener Katalysatoren , 1998 .

[14]  John M. Newsam,et al.  Heterogeneous catalysis: looking forward with molecular simulation , 1999 .

[15]  Hans-Werner Schmidt,et al.  Combinatorial Material Libraries on the Microgram Scale with an Example of Hydrothermal Synthesis. , 1998, Angewandte Chemie.

[16]  Duncan Akporiaye,et al.  Hydrothermalsynthesen von Zeolithen mit Methoden der kombinatorischen Chemie , 1998 .

[17]  Freek Kapteijn,et al.  The six-flow reactor technology: A review on fast catalyst screening and kinetic studies , 2000 .

[18]  Lutz Weber,et al.  Optimierung der biologischen Aktivität von kombinatorischen Verbindungsbibliotheken durch einen genetischen Algorithmus , 1995 .

[19]  R. H. Crabtree,et al.  Speeding catalyst discovery and optimization , 1999 .

[20]  L. Gladden,et al.  Development of a Genetic Algorithm for Molecular Scale Catalyst Design , 1997 .

[21]  Zengin,et al.  High-Throughput Testing of Heterogeneous Catalyst Libraries Using Array Microreactors and Mass Spectrometry. , 1999, Angewandte Chemie.

[22]  Dan Luss,et al.  Infrared Thermographic Screening of Combinatorial Libraries of Heterogeneous Catalysts , 1996 .

[23]  R. Dolle,et al.  Comprehensive survey of combinatorial library synthesis: 1998. , 1999, Journal of combinatorial chemistry.

[24]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.

[25]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[26]  Naonobu Katada,et al.  Silica Monolayer Solid‐Acid Catalyst Prepared by CVD , 1996 .

[27]  Michael P. Harold,et al.  Micromachined reactors for catalytic partial oxidation reactions , 1997 .

[28]  Klaus Gubernator,et al.  Optimization of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm , 1995 .

[29]  Selim Senkan,et al.  Application of combinatorial catalysis to the selective reduction of NO by C3H6 , 2000 .

[30]  Ramakrishnan Srikant,et al.  The Quest Data Mining System , 1996, KDD.

[31]  R. Schlögl,et al.  Kombinatorische Chemie in der heterogenen Katalyse: ein neuer wissenschaftlicher Ansatz oder „des Kaisers neue Kleider”︁? , 1998 .

[32]  S. Senkan,et al.  Discovery and Optimization of Heterogeneous Catalysts by Using Combinatorial Chemistry. , 1999, Angewandte Chemie.

[33]  Hoffmann,et al.  Parallel Synthesis and Testing of Catalysts under Nearly Conventional Testing Conditions. , 1999, Angewandte Chemie.

[34]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[35]  J. Sutherland,et al.  Catalyst Screening Using an Array of Thermistors. , 2000, Angewandte Chemie.

[36]  Y. Kim,et al.  Selective growth and characterization of pure, epitaxial α-Fe2O3(0001) and Fe3O4(001) films by plasma-assisted molecular beam epitaxy , 1997 .

[37]  Howard Turner,et al.  Kombinatorische Parallelsynthese und Hochgeschwindigkeitsrasterung von Heterogenkatalysator‐Bibliotheken , 1999 .

[38]  Günther Jung,et al.  FT-IR Mapping-A New Tool for Spatially Resolved Characterization of Polymer-Bound Combinatorial Compound Libraries with IR Microscopy. , 1998, Angewandte Chemie.

[39]  Andre A. Gorbunov,et al.  Ultrathin film deposition by pulsed laser ablation using crossed beams , 1996 .

[40]  P. Walden Die Chemie der Gegenwart und Kulturaufgaben der Zukunft , 1924 .

[41]  W. H. Weinberg,et al.  High-throughput synthesis and screening of V–Al–Nb and Cr–Al–Nb oxide libraries for ethane oxidative dehydrogenation to ethylene , 2000 .

[42]  J. Lunsford,et al.  Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst , 1985 .

[43]  Chris L. Waller,et al.  Rational Combinatorial Library Design. 3. Simulated Annealing Guided Evaluation (SAGE) of Molecular Diversity: A Novel Computational Tool for Universal Library Design and Database Mining , 1999, J. Chem. Inf. Comput. Sci..

[44]  Lutz Weber,et al.  Evolutionary combinatorial chemistry: application of genetic algorithms , 1998 .

[45]  Alan Cooper,et al.  REACTIVE DYES AS A METHOD FOR RAPID SCREENING OF HOMOGENEOUS CATALYSTS , 1998 .

[46]  Isik Onal,et al.  Hochdurchsatz-Screening von Heterogenkatalysator-Bibliotheken unter Verwendung eines Mehrkammerreaktorsystems und der Massenspektrometrie , 1999 .

[47]  James A. Schwarz,et al.  Methods for Preparation of Catalytic Materials , 1995 .

[48]  Sven Järås,et al.  A review of the use of plasma techniques in catalyst preparation and catalytic reactions , 1996 .

[49]  Wilhelm F. Maier,et al.  Erkennung der Selektivität von Oxidationsreaktionen auf Katalysatorbibliotheken durch ortsaufgelöste Massenspektrometrie , 1999 .

[50]  Edward S. Yeung,et al.  High-Throughput Screening of Heterogeneous Catalysts by Laser-Induced Fluorescence Imaging , 2000 .

[51]  Francesca Cesarini,et al.  Describing Database Objects in a Concept Language Environment , 1996, IEEE Trans. Knowl. Data Eng..

[52]  Selim Senkan,et al.  Entdeckung und Optimierung von Heterogenkatalysatoren durch kombinatorische Chemie , 1999 .

[53]  Michalis Konsolakis,et al.  The effect of sodium on the Pd-catalyzed reduction of NO by methane , 1998 .

[54]  Tingjun Hou,et al.  Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search. , 1999, Protein engineering.

[55]  Howard Turner,et al.  Kombinatorische Materialforschung und Katalyse , 1999 .

[56]  V. P. Ivanov,et al.  Monolith perovskite catalysts of honeycomb structure for fuel combustion , 1995 .

[57]  Gheorghi P. Vissokov,et al.  Experimental studies on the plasma-chemical synthesis of a catalyst for natural gas reforming , 1998 .

[58]  Philip M. Dean,et al.  A branch-and-bound method for optimal atom-type assignment in de novo ligand design , 1998, J. Comput. Aided Mol. Des..

[59]  M. R. Thompson,et al.  An active site hypothesis for well-crystallized vanadium phosphorus oxide catalyst systems , 1993 .

[60]  Robert Schlögl,et al.  Combinatorial Chemistry in Heterogeneous Catalysis: A New Scientific Approach or "the King's New Clothes"? , 1998, Angewandte Chemie.

[61]  Mark E. Davis,et al.  Combinatorial methods: How will they integrate into chemical engineering? , 1999 .

[62]  J. Hanak The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems , 1970 .

[63]  Masatoshi Nagai,et al.  CVD Synthesis of Alumina-supported Molybdenum Carbide Catalyst , 1996 .

[64]  Christian Hoffmann,et al.  Parallele Synthese und Prüfung von Katalysatoren nah an konventionellen Testbedingungen , 1999 .

[65]  J. Morken,et al.  Thermographic selection of effective catalysts from an encoded polymer-bound library , 1998, Science.

[66]  Charles N. Satterfield,et al.  Heterogeneous catalysis in practice , 1980 .

[67]  Yoh-Han Pao,et al.  Combinatorial optimization with use of guided evolutionary simulated annealing , 1995, IEEE Trans. Neural Networks.

[68]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[69]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[70]  Reddington,et al.  Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts , 1998, Science.

[71]  Michael Becker,et al.  Zeitaufgelöste IR‐thermographische Detektion und Screening von enantioselektiven katalytischen Reaktionen , 1998 .

[72]  Wilhelm F. Maier,et al.  Kombinatorische Materialbibliothek im μg-Maßstab am Beispiel der Hydrothermalsynthese , 1998 .

[73]  Selim Senkan,et al.  Quantum chemical study of the catalytic oxidative coupling of methane , 1997 .

[74]  A Scherer,et al.  A microfabricated device for sizing and sorting DNA molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Martin Lucas,et al.  Parallelisierte Synthese und schnelle katalytische Testung von Katalysatorbibliotheken für Oxidationsreaktionen , 1999 .

[76]  Hans-Werner Schmidt,et al.  Detection of Catalytic Activity in Combinatorial Libraries of Heterogeneous Catalysts by IR Thermography. , 1998, Angewandte Chemie.

[77]  Anthony W. Czarnik,et al.  Combinatorial Chemistry: Synthesis and Application , 2003 .

[78]  Friedrich Lottspeich,et al.  Proteome Analysis: A Pathway to the Functional Analysis of Proteins. , 1999, Angewandte Chemie.

[79]  Orschel,et al.  Detection of Reaction Selectivity on Catalyst Libraries by Spatially Resolved Mass Spectrometry. , 1999, Angewandte Chemie.

[80]  Stan Matwin,et al.  Data mining to predict aircraft component replacement , 1999, IEEE Intell. Syst..

[81]  Edward P. Jaeger,et al.  Application of Genetic Algorithms to Combinatorial Synthesis: A Computational Approach to Lead Identification and Lead Optimization†,∇ , 1996 .

[82]  Manfred T Reetz,et al.  Time-Resolved IR-Thermographic Detection and Screening of Enantioselectivity in Catalytic Reactions. , 1998, Angewandte Chemie.

[83]  M. D. Amiridis,et al.  The selective catalytic reduction of nitric oxide by propylene over Pt/SiO2 , 1998 .