Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM

[1]  Miguel de Val-Borro,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H , 2022, Nature.

[2]  Tucson,et al.  Identification of carbon dioxide in an exoplanet atmosphere , 2022, Nature.

[3]  H. Isaacson,et al.  Chemical Abundances for 25 JWST Exoplanet Host Stars with KeckSpec , 2022, Research Notes of the AAS.

[4]  A. D. Feinstein,et al.  Eureka!: An End-to-End Pipeline for JWST Time-Series Observations , 2022, J. Open Source Softw..

[5]  E. Schlawin,et al.  Atmospheric Characterization of Hot Jupiter CoRoT-1 b Using the Wide Field Camera 3 on the Hubble Space Telescope , 2022, 2206.03517.

[6]  D. Sing,et al.  Analysis of a JWST NIRSpec Lab Time Series: Characterizing Systematics, Recovering Exoplanet Transit Spectroscopy, and Constraining a Noise Floor , 2022, The Astrophysical Journal Letters.

[7]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. IV. Capabilities and predicted performance for exoplanet characterization , 2022, Astronomy & Astrophysics.

[8]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS) , 2022, Astronomy & Astrophysics.

[9]  K. Heng,et al.  A Comparative Study of Atmospheric Chemistry with VULCAN , 2021, The Astrophysical Journal.

[10]  Adam J. R. W. Smith,et al.  The Sonora Brown Dwarf Atmosphere and Evolution Models. I. Model Description and Application to Cloudless Atmospheres in Rainout Chemical Equilibrium , 2021, The Astrophysical Journal.

[11]  Timothy D. Brandt,et al.  'exoplanet': Gradient-based probabilistic inference for exoplanet data & other astronomical time series , 2021, J. Open Source Softw..

[12]  D. Apai,et al.  ACCESS and LRG-BEASTS: A Precise New Optical Transmission Spectrum of the Ultrahot Jupiter WASP-103b , 2021, The Astronomical Journal.

[13]  N. Madhusudhan,et al.  Sulfur chemistry in the atmospheres of warm and hot Jupiters , 2021, Monthly Notices of the Royal Astronomical Society.

[14]  J. Fortney,et al.  Transmission Spectroscopy for the Warm Sub-Neptune HD 3167c: Evidence for Molecular Absorption and a Possible High-metallicity Atmosphere , 2020, The Astronomical Journal.

[15]  J. Leisenring,et al.  JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series , 2020, The Astronomical Journal.

[16]  N. Lewis,et al.  A library of self-consistent simulated exoplanet atmospheres , 2020, Monthly Notices of the Royal Astronomical Society.

[17]  Iva Laginja,et al.  ExoTiC-ISM: A Python package for marginalised exoplanet transit parameters across a grid of systematic instrument models , 2020, J. Open Source Softw..

[18]  Xi Zhang Atmospheric regimes and trends on exoplanets and brown dwarfs , 2020, Research in Astronomy and Astrophysics.

[19]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[20]  T. Barman,et al.  The PHOENIX Exoplanet Retrieval Algorithm and Using H− Opacity as a Probe in Ultrahot Jupiters , 2020, The Astronomical Journal.

[21]  I. Gordon,et al.  An Accurate, Extensive, and Practical Line List of Methane for the HITEMP Database , 2020, The Astrophysical Journal Supplement Series.

[22]  F. Spiegelman,et al.  Mass–Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K , 2019, The Astrophysical Journal.

[23]  T. Louden,et al.  Transit Signatures of Inhomogeneous Clouds on Hot Jupiters: Insights from Microphysical Cloud Modeling , 2019, The Astrophysical Journal.

[24]  J. Fortney,et al.  Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b , 2019, The Astrophysical Journal.

[25]  E. Agol,et al.  Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening , 2019, The Astronomical Journal.

[26]  I. Skillen,et al.  LRG-BEASTS: Transmission Spectroscopy and Retrieval Analysis of the Highly Inflated Saturn-mass Planet WASP-39b , 2019, The Astronomical Journal.

[27]  F. Spiegelman,et al.  New study of the line profiles of sodium perturbed by H2 , 2019, Astronomy & Astrophysics.

[28]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[29]  J. Fortney,et al.  A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds , 2019, Nature Astronomy.

[30]  T. Henning,et al.  petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval. , 2019, 1904.11504.

[31]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  T. Evans,et al.  The carbon-to-oxygen ratio: implications for the spectra of hydrogen-dominated exoplanet atmospheres , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  R. MacDonald,et al.  H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  David P. Fleming,et al.  starry: Analytic Occultation Light Curves , 2018, 1810.06559.

[35]  K. Heng,et al.  Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalization degeneracy , 2018, Monthly Notices of the Royal Astronomical Society.

[36]  T. Barman,et al.  Ground- and Space-based Detection of the Thermal Emission Spectrum of the Transiting Hot Jupiter KELT-2Ab , 2018, The Astronomical Journal.

[37]  J. Tennyson,et al.  ExoMol molecular line lists XXX: a complete high-accuracy line list for water , 2018, Monthly Notices of the Royal Astronomical Society.

[38]  Gregory S. Tucker,et al.  The Transiting Exoplanet Community Early Release Science Program for JWST , 2018, Publications of the Astronomical Society of the Pacific.

[39]  A. M. S. Smith,et al.  The GAPS programme with HARPS-N at TNG: XVI. Measurement of the Rossiter–McLaughlin effect of transiting planetary systems HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60 , 2018, 1802.03859.

[40]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[41]  Jacob L. Bean,et al.  H− Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b , 2018, 1801.02489.

[42]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[43]  Nikolay Nikolov,et al.  A library of ATMO forward model transmission spectra for hot Jupiter exoplanets , 2017, 1710.10269.

[44]  I. P. Waldmann,et al.  A Population Study of Gaseous Exoplanets , 2017, 1704.05413.

[45]  Klaus Pontoppidan,et al.  PandExo: A Community Tool for Transiting Exoplanet Science with JWST & HST , 2017, 1702.01820.

[46]  Drake Deming,et al.  Illusion and reality in the atmospheres of exoplanets , 2017, 1701.00493.

[47]  P. J. Wheatley,et al.  Rayleigh scattering in the transmission spectrum of HAT-P-18b , 2016, 1611.06916.

[48]  Erik Petigura,et al.  SPITZER OBSERVATIONS CONFIRM AND RESCUE THE HABITABLE-ZONE SUPER-EARTH K2-18b FOR FUTURE CHARACTERIZATION , 2016, 1610.07249.

[49]  T. Evans,et al.  VLT FORS2 COMPARATIVE TRANSMISSION SPECTROSCOPY: DETECTION OF Na IN THE ATMOSPHERE OF WASP-39b FROM THE GROUND , 2016, 1610.01186.

[50]  A. A. Azzam,et al.  ExoMol molecular line lists - XVI: The rotation-vibration spectrum of hot H$_2$S , 2016, 1607.00499.

[51]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[52]  J. Tennyson,et al.  ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3 , 2016, 1603.04065.

[53]  G. Tucker,et al.  Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.

[54]  A. Burrows,et al.  HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.

[55]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[56]  J. Fortney,et al.  THE MASS–METALLICITY RELATION FOR GIANT PLANETS , 2015, 1511.07854.

[57]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[58]  Gilles Chabrier,et al.  FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES , 2015, 1504.03334.

[59]  Laurence S. Rothman,et al.  ROVIBRATIONAL LINE LISTS FOR NINE ISOTOPOLOGUES OF THE CO MOLECULE IN THE X1Σ+ GROUND ELECTRONIC STATE , 2015 .

[60]  R. Freedman,et al.  Reliable infrared line lists for 13 CO2 isotopologues up to E′=18,000 cm−1 and 1500 K, with line shape parameters , 2014 .

[61]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[62]  Andrea Chiavassa,et al.  The Stagger-grid: A grid of 3D stellar atmosphere models - IV. Limb darkening coefficients , 2014, 1403.3487.

[63]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[64]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[65]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[66]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[67]  M. Krečmerová,et al.  Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2,3-Dihydroxypropyl)adenine , 2012, Molecules.

[68]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[69]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[70]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[71]  E. Agol,et al.  THE IMPACT OF CIRCUMPLANTARY JETS ON TRANSIT SPECTRA AND TIMING OFFSETS FOR HOT JUPITERS , 2011, 1110.4377.

[72]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[73]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[74]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[75]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[76]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[77]  F. Spiegelman,et al.  Study of the K-H${_2}$ quasi-molecular line satellite in the potassium resonance line , 2007 .

[78]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[79]  D. Saumon,et al.  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[80]  Peter H. Hauschildt,et al.  Irradiated planets , 2001, astro-ph/0104262.

[81]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[82]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[83]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[84]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[85]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[86]  A. D. Feinstein,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRCam , 2023 .

[87]  Kristen B. Wymer,et al.  Characterization of JWST science performance from commissioning , 2022 .

[88]  P. J. Richards,et al.  Gaia Early Data Release 3 Summary of the contents and survey properties , 2020 .

[89]  J. Muzerolle,et al.  The JWST Calibration Pipeline , 2015 .