Spatiotemporal control of laser intensity

[1]  D. Turnbull,et al.  Raman Amplification with a Flying Focus. , 2018, Physical review letters.

[2]  D. Turnbull,et al.  Ionization waves of arbitrary velocity driven by a flying focus , 2017, 1712.07722.

[3]  F. Quéré,et al.  Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings , 2017, 1708.06210.

[4]  Wenchao Yan,et al.  High-order multiphoton Thomson scattering , 2017, Nature Photonics.

[5]  D. W. Grant,et al.  An ultra-high gain and efficient amplifier based on Raman amplification in plasma , 2017, Scientific Reports.

[6]  A. J. Gonsalves,et al.  Multistage coupling of independent laser-plasma accelerators , 2016, Nature.

[7]  K. A. Marsh,et al.  Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield , 2015, Nature.

[8]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[9]  S. Hooker,et al.  Developments in laser-driven plasma accelerators , 2013, Nature Photonics.

[10]  Claudio Pellegrini,et al.  The history of X-ray free-electron lasers , 2012 .

[11]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[12]  S. V. Bulanov,et al.  Schwinger limit attainability with extreme power lasers. , 2010, Physical review letters.

[13]  George Rodriguez,et al.  Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions , 2008 .

[14]  Erik Lefebvre,et al.  Principles and applications of compact laser–plasma accelerators , 2008 .

[15]  P. Michel,et al.  Magnetically controlled plasma waveguide for laser wakefield acceleration , 2008 .

[16]  Szymon Suckewer,et al.  A new method for generating ultraintense and ultrashort laser pulses , 2007 .

[17]  E. E. García-Guerrero,et al.  Design and fabrication of random phase diffusers for extending the depth of focus. , 2006, Optics express.

[18]  Vincent Bagnoud,et al.  5 Hz, > 250 mJ optical parametric chirped-pulse amplifier at 1053 nm. , 2005, Optics letters.

[19]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[20]  Szymon Suckewer,et al.  Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. , 2004, Physical review letters.

[21]  T. Mocek,et al.  Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide. , 2003, Physical review letters.

[22]  B. Wattellier,et al.  Beam-focus shaping by use of programmable phase-only filters: application to an ultralong focal line. , 2002, Optics letters.

[23]  P. Audebert,et al.  Monomode Guiding of 10 16 W/cm 2 Laser Pulses over 100 Rayleigh Lengths in Hollow Capillary Dielectric Tubes , 1999 .

[24]  R. Bingham Plasma physics: Surfing the wake , 1998, Nature.

[25]  S. Jackel,et al.  Channeling of terawatt laser pulses by use of hollow waveguides. , 1995, Optics letters.

[26]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[27]  O.D. Cortazar,et al.  Demonstration of a discharge pumped table-top soft X-ray laser , 1994, Proceedings of LEOS'94.

[28]  C. Durfee,et al.  Light pipe for high intensity laser pulses. , 1993, Physical review letters.

[29]  Dawson,et al.  Frequency up-conversion of electromagnetic radiation with use of an overdense plasma. , 1988, Physical review letters.

[30]  T. Katsouleas,et al.  Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves , 1984, Nature.

[31]  Gennady Shvets,et al.  FAST COMPRESSION OF LASER BEAMS TO HIGHLY OVERCRITICAL POWERS , 1999 .