Canonical bases for the quantum group of type $A_r$ and piecewise-linear combinatorics

This work was motivated by the following two problems from the classical representation theory. (Both problems make sense for an arbitrary complex semisimple Lie algebra but since we shall deal only with the Ar case, we formulate them in this generality). 1. Construct a “good” basis in every irreducible finite-dimensional slr+1-module Vλ, which “materializes” the Littlewood-Richardson rule. A precise formulation of this problem was given in [3]; we shall explain it in more detail a bit later. 2. Construct a basis in every polynomial representation of GLr+1, such that the maximal element w0 of the Weyl group Sr+1 (considered as an element of GLr+1) acts on this basis by a permutation (up to a sign), and explicitly compute this permutation. This problem is motivated by recent work by John Stembridge [10] and was brought to our attention by his talk at the Jerusalem Combinatorics Conference, May 1993.