Shelling Polyhedral 3-Balls and 4-Polytopes

Abstract. There is a long history of constructions of nonshellable triangulations of three-dimensional (topological) balls. This paper gives a survey of these constructions, including Furch's 1924 construction using knotted curves, which also appears in Bing's 1962 survey of combinatorial approaches to the Poincaré conjecture, Newman's 1926 explicit example, and M. E. Rudin's 1958 nonshellable triangulation of a tetrahedron with only 14 vertices (all on the boundary) and 41 facets. Here an (extremely simple) new example is presented: a nonshellable simplicial three-dimensional ball with only 10 vertices and 21 facets. It is further shown that shellings of simplicial 3 -balls and 4 -polytopes can ``get stuck'': simplicial 4 -polytopes are not in general ``extendably shellable.'' Our constructions imply that a Delaunay triangulation algorithm of Beichl and Sullivan, which proceeds along a shelling of a Delaunay triangulation, can get stuck in the three-dimensional version: for example, this may happen if the shelling follows a knotted curve.

[1]  Anders Björner,et al.  Matroid Applications: Homology and Shellability of Matroids and Geometric Lattices , 1992 .

[2]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[3]  Mary Ellen Rudin,et al.  An unshellable triangulation of a tetrahedron , 1958 .

[4]  E. C. Zeeman,et al.  On the dunce hat , 1963 .

[5]  G. Ziegler Lectures on Polytopes , 1994 .

[6]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[7]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[8]  Kimmo Eriksson,et al.  Extendable shellability for rank 3 matroid complexes , 1994, Discret. Math..

[9]  F. Frankl,et al.  Zur Topologie des dreidimensionalen Raumes , 1931 .

[10]  R. Connelly,et al.  A convex 3-complex not simplicially isomorphic to a strictly convex complex , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Ethan D. Bloch Complexes whose boundaries cannot be pushed around , 1989, Discret. Comput. Geom..

[12]  V. Klee,et al.  Shellings of Spheres and Polytopes. , 1974 .

[13]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[14]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[15]  Kathy Williamson Hoke Extending Shelling orders and a Hierarchy of Functions of Unimodal Simple Polytopes , 1995, Discret. Appl. Math..

[16]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[17]  H. T. H. PIAGGIO Lectures in Topology , 1942, Nature.

[18]  B. Sturmfels Oriented Matroids , 1993 .

[19]  Victor Klee,et al.  Which Spheres are Shellable , 1978 .

[20]  Otto Nurmi,et al.  Algorithms for computational geometry , 1987 .

[21]  Steve Armentrout Links and nonshellable cell partitionings of , 1993 .

[22]  L. Schläfli Theorie der vielfachen Kontinuität , 1901 .

[23]  R. S. Simon,et al.  Combinatorial Properties of "Cleanness" , 1994 .

[24]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[25]  G. T. Whyburn,et al.  Lectures in topology , 1942 .

[26]  W. B. R. Lickorish,et al.  Unshellable Triangulations of Spheres , 1991, Eur. J. Comb..

[27]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[28]  I. Beichl,et al.  A data-parallel algorithm for three-dimensional Delaunay triangulation and its implementation , 1993, Supercomputing '93.

[29]  Michelle L. Wachs,et al.  On lexicographically shellable posets , 1983 .

[30]  Robert Furch,et al.  Zur grundlegung der kombinatorischen topologie , 1924 .

[31]  W. B. R. Lickorish,et al.  Triangulations of the $3$-ball with knotted spanning $1$-simplexes and collapsible $r$th derived subdivisions , 1969 .

[32]  J. Hudson Piecewise linear topology , 1966 .

[33]  G. E. Bredon Topology and geometry , 1993 .

[34]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .