Breaking the Energy-Bandwidth Limit of Electrooptic Modulators: Theory and a Device Proposal

In this paper, we quantitatively analyzed the tradeoff between energy per bit for switching and modulation bandwidth of classical electrooptic modulators. A formally simple energy-bandwidth limit (10) is derived for electrooptic modulators based on intracavity index modulation. To overcome this limit, we propose a dual cavity modulator device which uses a coupling modulation scheme operating at high bandwidth (>200 GHz) not limited by cavity photon lifetime and simultaneously features an ultralow switching energy of 0.26 aJ, representing over three orders of magnitude energy consumption reduction compared to state-of-the-art electrooptic modulators.

[1]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[2]  Tong Ye,et al.  On Power Consumption of Silicon-Microring-Based Optical Modulators , 2010, Journal of Lightwave Technology.

[3]  Antao Chen,et al.  Electro-optic coefficients of 500 pm/V and beyond for organic materials , 2005, SPIE Optics + Photonics.

[4]  S. Xiao,et al.  Compact silicon microring resonators with ultra-low propagation loss in the C band. , 2007, Optics express.

[5]  Shanhui Fan,et al.  Lossless intensity modulation in integrated photonics. , 2012, Optics express.

[6]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[7]  H. Haus Waves and fields in optoelectronics , 1983 .

[8]  Muping Song,et al.  Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  J. Michel,et al.  Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. , 2010, Optics express.

[10]  W M J Green,et al.  Coupling modulation of microrings at rates beyond the linewidth limit. , 2013, Optics express.

[11]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[12]  David A B Miller,et al.  Energy consumption in optical modulators for interconnects. , 2012, Optics express.

[13]  Q. Quan,et al.  Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. , 2011, Optics express.

[14]  Kazumi Wada,et al.  Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform. , 2007, Optics express.

[15]  R. Ho,et al.  Ultra-low-energy all-CMOS modulator integrated with driver. , 2010, Optics express.

[16]  Lidija Sekaric,et al.  Optical modulation using anti-crossing between paired amplitude and phase resonators. , 2007, Optics express.

[17]  Geert Morthier,et al.  A low-power high-speed InP microdisk modulator heterogeneously integrated on a SOI waveguide. , 2012, Optics express.

[18]  A. Yariv Critical coupling and its control in optical waveguide-ring resonator systems , 2002, IEEE Photonics Technology Letters.

[19]  W. Sacher,et al.  Characteristics of Microring Resonators With Waveguide-Resonator Coupling Modulation , 2009, Journal of Lightwave Technology.

[20]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[21]  Volker J. Sorger,et al.  A Sub-- Size Modulator Beyond the Efficiency-Loss Limit Volume 5 , Number 4 , August 2013 , 2013 .

[22]  Kathleen Richardson,et al.  Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass. , 2011, Optics letters.

[23]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[24]  Michal Lipson,et al.  Ultra-low voltage, ultra-small mode volume silicon microring modulator. , 2010, Optics express.

[25]  Po-Tsung Lee,et al.  Photonic crystal horizontally slotted nanobeam cavity for silicon-based nanolasers. , 2012, Optics letters.

[26]  Thomas L. Koch Energy scaling in silicon photonic data encoding , 2011, 8th IEEE International Conference on Group IV Photonics.

[27]  N. Feng,et al.  Horizontal single and multiple slot waveguides: optical transmission at λ=1550 nm , 2007 .

[28]  Yoshinori Tanaka,et al.  Dynamic control of the Q factor in a photonic crystal nanocavity. , 2007, Nature materials.

[29]  Volker J. Sorger,et al.  A Sub-$\lambda$-Size Modulator Beyond the Efficiency-Loss Limit , 2013, IEEE Photonics Journal.

[30]  Xuezhe Zheng,et al.  Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. , 2009, Optics express.

[31]  Mo Li,et al.  Flexible and tunable silicon photonic circuits on plastic substrates , 2012, Scientific Reports.

[32]  Wesley D Sacher,et al.  Dynamics of microring resonator modulators. , 2008, Optics express.

[33]  Muping Song,et al.  Silicon-Based Microring Resonator Modulators for Intensity Modulation , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  P. Fauchet,et al.  Ultra-low power modulators using MOS depletion in a high-Q SiO₂-clad silicon 2-D photonic crystal resonator. , 2010, Optics express.

[35]  Anthony L Lentine,et al.  Vertical junction silicon microdisk modulators and switches. , 2011, Optics express.

[36]  R.M. Osgood,et al.  Fundamental limitations of optical resonator based high-speed EO modulators , 2002, IEEE Photonics Technology Letters.

[37]  A. Yariv Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2000 .

[38]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[39]  Ashok V. Krishnamoorthy,et al.  High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. , 2012, Optics express.

[40]  Trimming of Athermal Silicon Resonators , 2012 .

[41]  H. Thacker,et al.  Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. , 2012, Optics express.